Airway Tree Subtyping on Large Cohorts of CT Images for COPD Risk
针对慢性阻塞性肺病 (COPD) 风险对大组 CT 图像进行气道树亚型分析
基本信息
- 批准号:10646297
- 负责人:
- 金额:$ 61.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalActivities of Daily LivingAir MovementsAsthmaBiologicalCaliberCandidate Disease GeneCause of DeathCessation of lifeChronic Obstructive Pulmonary DiseaseComplexCountryCreativenessDetectionDevelopmentDevelopmental BiologyDiagnostic testsDictionaryDisease PathwayDisease susceptibilityEventExhibitsFosteringFundingGeneral PopulationGenerationsGeneticGrantHealth protectionHigh Resolution Computed TomographyImageImpairmentIndividualInterventionInvestigationKnowledgeLabelLinkLongterm Follow-upLungMachine LearningManualsMathematicsMeasuresMinorityMissionModelingMorphologyMulti-Ethnic Study of AtherosclerosisNational Heart, Lung, and Blood InstituteObstructive Lung DiseasesOccupationalOutcome MeasurePathway interactionsPhenotypePrognosisPublic HealthPublishingQuality of lifeRadiology SpecialtyReproducibilityResearchResolutionRespiratory Signs and SymptomsRiskRisk FactorsRoleScanningSeveritiesShapesSmokerSmokingSpirometryStandardizationStructureTestingTextbooksTimeTobaccoTreesUnited StatesUnited States National Institutes of HealthVariantWorkX-Ray Computed Tomographyairway obstructioncigarette smokingclinically relevantclinically significantcohortcostdeep learningdetectordisease prognosisdisorder riskenvironmental tobacco smokefollow-upgenetic epidemiologygenome wide association studyhigh standardimprovedinnovationlung developmentlung lobelung volumemachine learning methodnever smokernovelpersonalized medicinepollutantprognostic significancepulmonary function declinerespiratoryrisk stratificationrisk variantsupervised learningtoolunsupervised learning
项目摘要
Project Summary / Abstract:
Chronic obstructive pulmonary disease (COPD) defined by irreversible airflow limitation, is the 3rd leading cause
of death globally and 4th in the United States. Smoking tobacco is a major extrinsic COPD risk factor, but
despite six decades of declining smoking rates in many countries, the corresponding declines in COPD have
been modest. Only a minority of lifetime smokers develop COPD, and up to 25% occurs in never smokers.
While other factors have been linked to COPD much of the variation in COPD risk remains unexplained. In
addition, personalized risk and therapies are lacking for COPD, due to a lack of reliable COPD subphenotypes.
Airflow obstruction, or reduced airflow from the lungs, is determined in part by airway tree structure and lung
volume, both of which can be imaged with high precision by high resolution computed tomographic (HRCT)
scans. Emerging evidence by our group suggests that airway tree structure variation is common in the general
population and is a major contributor to this unexplained COPD risk. By manual labeling of the airway tree
structure, limited to one airway generation in just 2 of the 5 lung lobes (due to complexity of tree structure),
we found that 26% of the general population has major airway branch variants that differ from the classical
“textbook” structure, increase COPD risk, and have a strong and biologically plausible genetic basis. We further
demonstrated that airway tree caliber variation (dysanapsis) measured on CT was a stronger predictor of COPD
risk than all known risk factors including smoking. Yet there is no standardized approach to characterize the
full scope airway tree variation, making the exact relationship between COPD and individual airway-structure
features unclear. This proposal would apply for the first-time the power of machine learning methods to the
entire airway tree structure imaged on HRCT to build logically upon prior high-impact work to discover new
COPD subphenotypes for risk stratification and biological pathways of intervention.
Also, we will apply sophisticated / rigorous mathematical clustering approaches to airway trees derived from
over 18,000 computed tomography (CT) scans in three highly characterized NIH/NHLBI-funded cohorts – the
Multi-Ethnic Study of Atherosclerosis (MESA) Lung Study, the Subpopulations and Intermediate Outcome
Measures in Chronic Obstructive Pulmonary Disease Study (SPIROMICS), and the Genetic Epidemiology of
COPD (COPDGene) Study, in addition to the Canadian Cohort of Obstructive Lung Disease (CanCOLD) – to
discover and replicate novel and clinically significant airway tree subtypes and their genetic basis.
The proposed study provides a transformative opportunity to define and validate normal and clinically relevant
tree variation in the general population and COPD cohorts. This research would result in robust, reproducible,
image based novel quantitative airway tree structure subtypes from lung CT scans, and understand their role in
COPD risk, prognosis, and their underlying genetic basis to help personalize COPD risk.
项目摘要/摘要:
慢性阻塞性肺疾病 (COPD) 由不可逆气流受限定义,是第三大原因
死亡人数在全球排名第四,在美国排名第四。吸烟是慢性阻塞性肺病的一个主要外在危险因素,但是
尽管许多国家的吸烟率在过去 6 年来一直在下降,但慢性阻塞性肺病 (COPD) 的发病率也相应下降
一直很谦虚。只有少数终生吸烟者会患上慢性阻塞性肺病,而高达 25% 的慢性阻塞性肺病发生在从不吸烟的人身上。
尽管其他因素与慢性阻塞性肺病有关,但慢性阻塞性肺病风险的大部分变化仍然无法解释。在
此外,由于缺乏可靠的慢性阻塞性肺病亚表型,慢性阻塞性肺病缺乏个性化的风险和治疗。
气流阻塞或来自肺部的气流减少部分取决于气道树结构和肺部
体积,两者都可以通过高分辨率计算机断层扫描 (HRCT) 进行高精度成像
扫描。我们小组的新证据表明,气道树结构变异在一般情况下很常见
人口,是造成这种无法解释的慢性阻塞性肺病风险的主要因素。通过手动标记气道树
结构,仅限于 5 个肺叶中的 2 个肺叶中的一个气道生成(由于树结构的复杂性),
我们发现 26% 的普通人群具有与经典气道分支不同的主要气道分支变异
“教科书”结构,增加慢性阻塞性肺病风险,并具有强大且生物学上合理的遗传基础。我们进一步
证明 CT 测量的气道树口径变化(休憩)是 COPD 的更强预测因子
风险高于包括吸烟在内的所有已知风险因素。但目前尚无标准化方法来表征
全方位气道树变异,使 COPD 与个体气道结构之间存在精确关系
特点不明确。该提案将首次将机器学习方法的力量应用于
在 HRCT 上成像的整个气道树结构,以逻辑方式建立在先前的高影响力工作的基础上,以发现新的
用于风险分层和干预生物学途径的慢性阻塞性肺病亚表型。
此外,我们还将对源自以下内容的气道树应用复杂/严格的数学聚类方法:
在 NIH/NHLBI 资助的三个高度特征化的队列中进行了超过 18,000 次计算机断层扫描 (CT) 扫描 –
动脉粥样硬化多种族研究 (MESA) 肺研究、亚群和中间结果
慢性阻塞性肺疾病研究 (SPIROMICS) 的措施以及遗传流行病学
慢性阻塞性肺病 (COPDGene) 研究,以及加拿大阻塞性肺疾病队列 (CanCOLD) –
发现和复制新颖且具有临床意义的气道树亚型及其遗传基础。
拟议的研究提供了一个变革性的机会来定义和验证正常和临床相关的
一般人群和慢性阻塞性肺病队列中的树变异。这项研究将产生稳健的、可重复的、
基于肺部 CT 扫描的新型定量气道树结构亚型的图像,并了解它们在
COPD 风险、预后及其潜在遗传基础有助于个性化 COPD 风险。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Francis Laine其他文献
Andrew Francis Laine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Francis Laine', 18)}}的其他基金
Airway Tree Subtyping on Large Cohorts of CT Images for COPD Risk
针对慢性阻塞性肺病 (COPD) 风险对大组 CT 图像进行气道树亚型分析
- 批准号:
10299153 - 财政年份:2021
- 资助金额:
$ 61.69万 - 项目类别:
Airway Tree Subtyping on Large Cohorts of CT Images for COPD Risk
针对慢性阻塞性肺病 (COPD) 风险对大组 CT 图像进行气道树亚型分析
- 批准号:
10435540 - 财政年份:2021
- 资助金额:
$ 61.69万 - 项目类别:
Clinical validation of cardiac strain measures with real-time 4D ultrasound
使用实时 4D 超声测量心脏应变的临床验证
- 批准号:
7842187 - 财政年份:2009
- 资助金额:
$ 61.69万 - 项目类别:
Clinical validation of cardiac strain measures with real-time 4D ultrasound
使用实时 4D 超声测量心脏应变的临床验证
- 批准号:
7663144 - 财政年份:2008
- 资助金额:
$ 61.69万 - 项目类别:
Clinical validation of cardiac strain measures with real-time 4D ultrasound
使用实时 4D 超声测量心脏应变的临床验证
- 批准号:
7528866 - 财政年份:2008
- 资助金额:
$ 61.69万 - 项目类别:
Clinical validation of cardiac strain measures with real-time 4D ultrasound
使用实时 4D 超声测量心脏应变的临床验证
- 批准号:
7914454 - 财政年份:2008
- 资助金额:
$ 61.69万 - 项目类别:
相似海外基金
Determining 4-Dimensional Foot Loading Profiles of Healthy Adults across Activities of Daily Living
确定健康成年人日常生活活动的 4 维足部负荷曲线
- 批准号:
2473795 - 财政年份:2024
- 资助金额:
$ 61.69万 - 项目类别:
Studentship
Developing a trunk function assessment for hemiplegics. -For improving activities of daily living-
开发偏瘫患者的躯干功能评估。
- 批准号:
23K10540 - 财政年份:2023
- 资助金额:
$ 61.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Relation with the activities of daily living and the subjective values among people with social withdrawal
社交退缩者日常生活活动与主观价值观的关系
- 批准号:
23K16596 - 财政年份:2023
- 资助金额:
$ 61.69万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CRII: RI: Understanding Activities of Daily Living in Indoor Scenarios
CRII:RI:了解室内场景中的日常生活活动
- 批准号:
2245652 - 财政年份:2023
- 资助金额:
$ 61.69万 - 项目类别:
Standard Grant
Association between Nursing Care and Prognosis and Activities of Daily Living in Acute Stroke patients by using Big Data.
利用大数据研究急性脑卒中患者的护理与预后和日常生活活动的关系。
- 批准号:
23K16412 - 财政年份:2023
- 资助金额:
$ 61.69万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Sources of vulnerability among those using homecare despite having no limitations in Activities of Daily Living. An intersectionality analysis
尽管日常生活活动没有限制,但使用家庭护理的人的脆弱性来源。
- 批准号:
499112 - 财政年份:2023
- 资助金额:
$ 61.69万 - 项目类别:
Operating Grants
Synergizing home health rehabilitation therapy to optimize patients’ activities of daily living
协同家庭健康康复治疗,优化患者的日常生活活动
- 批准号:
10429480 - 财政年份:2022
- 资助金额:
$ 61.69万 - 项目类别:
Effects of a model of nurses-occupational therapists collaborative practice on activities of daily living in elderly patients
护士-职业治疗师合作实践模式对老年患者日常生活活动的影响
- 批准号:
22K17540 - 财政年份:2022
- 资助金额:
$ 61.69万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Assessing a Novel Virtual Environment that Primes Individuals Living with AD/ADRD to Accomplish Activities of Daily Living.
评估一种新颖的虚拟环境,该环境可以帮助 AD/ADRD 患者完成日常生活活动。
- 批准号:
10668160 - 财政年份:2022
- 资助金额:
$ 61.69万 - 项目类别:
Synergizing home health rehabilitation therapy to optimize patients’ activities of daily living
协同家庭健康康复治疗,优化患者的日常生活活动
- 批准号:
10621820 - 财政年份:2022
- 资助金额:
$ 61.69万 - 项目类别:














{{item.name}}会员




