Predicting Pulmonary and Cardiac Morbidity in Preterm Infants with Deep Learning
通过深度学习预测早产儿的肺部和心脏发病率
基本信息
- 批准号:10646498
- 负责人:
- 金额:$ 16.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:37 weeks gestationAccountingAcuteAddressAdverse eventAffectAreaAwardBig DataBioinformaticsBiometryBirthBirth WeightBostonBronchopulmonary DysplasiaCardiacCategoriesChronicClinicalClinical DataClinical MedicineCollaborationsComputational TechniqueConceptionsDataData AnalysesData ScientistData SourcesDatabasesDecision MakingDiagnosisDoctor of PhilosophyEducationElectronic Health RecordEnvironmentEventFutureGestational AgeGoalsGraduate DegreeGrantHealthHealthcareHealthcare SystemsHeartHeart DiseasesHospitalsHuman PathologyIncidenceInfantInformaticsInstitutional Review BoardsInsurance CarriersLifeLiquid substanceLungLung diseasesMachine LearningMeasuresMentorsMentorshipMethodologyModelingMonitorMorbidity - disease rateNatureNecrotizing EnterocolitisNeonatalNeonatal Intensive Care UnitsNeonatologyOutcomePatent Ductus ArteriosusPatientsPatternPediatricsPerformancePerinatalPhysiciansPhysiologicalPopulationPregnancyPregnant WomenPremature BirthPremature InfantPremature LaborReproducibilityResearchResearch PersonnelResearch SupportRestRetinopathy of PrematurityRisk EstimateScientistSepsisSideSignal TransductionSourceTeaching HospitalsTechniquesTimeTrainingTranslatingUpdateVulnerable PopulationsWorkclinical practiceclinical predictorsdata resourcedeep learningdeep learning algorithmdeep learning modeldesigneducation planningelectronic health dataexperienceimprovedinsurance claimsmodel buildingmortalitypeerportabilityprediction algorithmpredictive modelingprematureprognosticrespiratory distress syndromerisk predictionrisk prediction modelsocialstatisticsstructured data
项目摘要
RESEARCH SUMMARY
The goal of this award is to provide Andrew Beam, PhD with research support and comprehensive mentoring
designed to transition him to an independent investigator in perinatal and neonatal informatics. Preterm labor
(PTL) is labor which occurs before 37 weeks of gestation and carries with it enormous health and financial
consequences. Preterm infants have some of the highest levels of pulmonary and cardiac morbidity, yet
machine-learning techniques for these important outcomes remains under developed. The research strategy is
focused developing predictive models for two very important clinical scenarios using large sources of existing
healthcare data. The focus of Specific Aim 1 develops a new form of machine learning known as deep learning
for predicting PTL in pregnant women, while the focus of Specific Aim 2 investigates the use of deep learning
for predicting clinical trajectories of preterm infants in the NICU. Currently, management and anticipation of
both clinical scenarios is challenging and advancement in our predictive capacity could dramatically improve
the quality and efficiency of the healthcare system. These models will be built using an existing database of 50
million patient-lives obtained through a partnership with a major US health insurer. Specific Aim 3 seeks to
understand how the models constructed using this unique data resource translate and generalize to data from
the electronic health records of Boston-area hospitals, which is a key concern for all healthcare data scientists.
The education plan focuses on augmenting Dr. Beam’s graduate degrees in statistics and bioinformatics with
additional training in clinical medicine and human pathology. This additional education will grant Dr. Beam a
deeper understanding of the clinical problems faced by these populations and will allow for more fluid
collaborations with clinicians in the future. The composition of Dr. Beam’s mentorship committee, which
includes expertise in neonatology, biostatistics, and translational informatics, reflects his long-term desire to be
quantitative scientist who works side-by-side practicing physicians so that quantitative research is translated
into impactful clinical practice.
研究综述
该奖项的目标是为安德鲁梁博士提供研究支持和全面的指导
旨在将他转变为围产期和新生儿信息学的独立研究者。早产
(PTL)是在怀孕37周之前发生的分娩,伴随着巨大的健康和经济损失。
后果早产儿的肺部和心脏病发病率最高,
用于这些重要成果的机器学习技术仍处于开发阶段。研究策略是
重点开发两个非常重要的临床场景的预测模型,使用现有的大量来源,
医疗保健数据。Specific Aim 1的重点是开发一种新形式的机器学习,称为深度学习
用于预测孕妇的PTL,而具体目标2的重点是研究深度学习的使用
用于预测新生儿重症监护室中早产儿的临床轨迹。目前,管理和预测
这两种临床场景都具有挑战性,我们预测能力的进步可以显着提高
医疗保健系统的质量和效率。这些模型将使用现有的50个数据库建立
通过与美国一家大型医疗保险公司的合作,具体目标3旨在
了解使用这种独特的数据资源构建的模型如何转换和推广到数据,
波士顿地区医院的电子健康记录,这是所有医疗保健数据科学家的关键问题。
教育计划的重点是增加博士梁的统计学和生物信息学的研究生学位,
临床医学和人类病理学的额外培训。这一额外的教育将授予梁博士
更深入地了解这些人群所面临的临床问题,
未来与临床医生的合作。比姆博士导师委员会的组成,
包括生物学,生物统计学和翻译信息学的专业知识,反映了他长期以来的愿望,
与执业医师并肩工作的定量科学家,以便将定量研究转化为
转化为有效的临床实践
项目成果
期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension.
- DOI:10.1038/s41591-020-1034-x
- 发表时间:2020-09
- 期刊:
- 影响因子:82.9
- 作者:Liu X;Cruz Rivera S;Moher D;Calvert MJ;Denniston AK;SPIRIT-AI and CONSORT-AI Working Group
- 通讯作者:SPIRIT-AI and CONSORT-AI Working Group
Sharpening the resolution on data matters: a brief roadmap for understanding deep learning for medical data.
- DOI:10.1016/j.spinee.2020.08.012
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Schmaltz A;Beam AL
- 通讯作者:Beam AL
Time to reality check the promises of machine learning-powered precision medicine.
- DOI:10.1016/s2589-7500(20)30200-4
- 发表时间:2020-12
- 期刊:
- 影响因子:30.8
- 作者:Wilkinson, Jack;Arnold, Kellyn F.;Murray, Eleanor J.;van Smeden, Maarten;Carr, Kareem;Sippy, Rachel;de Kamps, Marc;Beam, Andrew;Konigorski, Stefan;Lippert, Christoph;Gilthorpe, Mark S.;Tennant, Peter W. G.
- 通讯作者:Tennant, Peter W. G.
Safe and reliable transport of prediction models to new healthcare settings without the need to collect new labeled data.
将预测模型安全可靠地传输到新的医疗保健环境,而无需收集新的标记数据。
- DOI:10.1101/2023.12.13.23299899
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Tuwani,Rudraksh;Beam,Andrew
- 通讯作者:Beam,Andrew
A Review of Challenges and Opportunities in Machine Learning for Health.
- DOI:
- 发表时间:2018-06
- 期刊:
- 影响因子:0
- 作者:M. Ghassemi;Tristan Naumann;Peter F. Schulam;A. Beam;I. Chen;R. Ranganath
- 通讯作者:M. Ghassemi;Tristan Naumann;Peter F. Schulam;A. Beam;I. Chen;R. Ranganath
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew L. Beam其他文献
Correction to: Artificial Intelligence Based on Machine Learning in Pharmacovigilance: A Scoping Review
- DOI:
10.1007/s40264-023-01273-9 - 发表时间:
2023-02-24 - 期刊:
- 影响因子:3.800
- 作者:
Benjamin Kompa;Joe B. Hakim;Anil Palepu;Kathryn Grace Kompa;Michael Smith;Paul A. Bain;Stephen Woloszynek;Jeffery L. Painter;Andrew Bate;Andrew L. Beam - 通讯作者:
Andrew L. Beam
534 Regional differences in utilization of 17α-hydroxyprogesterone caproate (17OHP)
- DOI:
10.1016/j.ajog.2020.12.555 - 发表时间:
2021-02-01 - 期刊:
- 影响因子:
- 作者:
Jessica M. Hart;Joe B. Hakim;Blair J. Wylie;Andrew L. Beam - 通讯作者:
Andrew L. Beam
Development and validation of a deep learning model for diagnosing neuropathic corneal pain via in vivo confocal microscopy
通过体内共聚焦显微镜诊断神经性角膜疼痛的深度学习模型的开发与验证
- DOI:
10.1038/s41746-025-01577-3 - 发表时间:
2025-05-14 - 期刊:
- 影响因子:15.100
- 作者:
Neslihan Dilruba Koseoglu;Eric Chen;Rudraksh Tuwani;Benjamin Kompa;Stephanie M. Cox;M. Cuneyt Ozmen;Mina Massaro-Giordano;Andrew L. Beam;Pedram Hamrah - 通讯作者:
Pedram Hamrah
TIER: Text-Image Entropy Regularization for CLIP-style models
TIER:CLIP 样式模型的文本图像熵正则化
- DOI:
10.48550/arxiv.2212.06710 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Anil Palepu;Andrew L. Beam - 通讯作者:
Andrew L. Beam
Andrew L. Beam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew L. Beam', 18)}}的其他基金
Predicting Pulmonary and Cardiac Morbidity in Preterm Infants with Deep Learning
通过深度学习预测早产儿的肺部和心脏发病率
- 批准号:
10198019 - 财政年份:2019
- 资助金额:
$ 16.63万 - 项目类别:
Predicting Pulmonary and Cardiac Morbidity in Preterm Infants with Deep Learning
通过深度学习预测早产儿的肺部和心脏发病率
- 批准号:
10470098 - 财政年份:2019
- 资助金额:
$ 16.63万 - 项目类别:
Predicting Pulmonary and Cardiac Morbidity in Preterm Infants with Deep Learning
通过深度学习预测早产儿的肺部和心脏发病率
- 批准号:
9928552 - 财政年份:2019
- 资助金额:
$ 16.63万 - 项目类别:
相似海外基金
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 16.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 16.63万 - 项目类别:
Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
- 批准号:
24K04974 - 财政年份:2024
- 资助金额:
$ 16.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
- 批准号:
2312319 - 财政年份:2023
- 资助金额:
$ 16.63万 - 项目类别:
Standard Grant
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
- 批准号:
23K01686 - 财政年份:2023
- 资助金额:
$ 16.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
- 批准号:
23K01692 - 财政年份:2023
- 资助金额:
$ 16.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
- 批准号:
23K01695 - 财政年份:2023
- 资助金额:
$ 16.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
- 批准号:
23K01713 - 财政年份:2023
- 资助金额:
$ 16.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
- 批准号:
23K01715 - 财政年份:2023
- 资助金额:
$ 16.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 16.63万 - 项目类别: