Therapeutic potential of systemic and localized zinc delivery for modulating fracture repair
全身和局部锌输送调节骨折修复的治疗潜力
基本信息
- 批准号:10648863
- 负责人:
- 金额:$ 16.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-18 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AmericanAnimalsApoptosisAwardBiocompatible MaterialsBiological AssayBiologyBone RegenerationBone callusCalciumCell Culture TechniquesCell DeathCellsCessation of lifeComplexDataDepositionDevelopmentDevicesDietDiseaseEvolutionExcretory functionFemurFoundationsFractureFutureHistologyHomeostasisHumanHydrogelsImmunohistochemistryImpairmentImplantIn VitroInjuryIntramedullary NailingLinkLong-Term Care NursingMentorsMesenchymal Stem CellsMetalsMicroscopyMissionModelingOsteoblastsOsteogenesisOsteoporosisOsteotomyPennsylvaniaPersonsPilot ProjectsPlayPolishesPolymersPositioning AttributeProliferatingRattusResearchRoleSeriesSpeedSprague-Dawley RatsStainsSurfaceTestingTherapeuticTitaniumTraumaUnited States National Institutes of HealthUniversitiesWeight-Bearing stateX-Ray Computed TomographyZincbiodegradable polymerbiomechanical testbonebone fracture repairbone healingbone massbone preservationbone repaircell behaviordata submissionexperimental studyfluorexonhealingimplantationimprovedin vitro Modelin vivomechanical loadmechanical stimulusmechanotransductionmetermicroCTprematurereconstructionregenerative cellresponseskills trainingstem cell fatesynergismtraffickingtranscription factoruptake
项目摘要
Bone fractures are common injuries that impact millions of people each year, and poorly healed fractures
cause impaired mobility, long-term nursing care, or even premature death. It is known that controlled
mechanical loading can improve the quality and speed of fracture repair, but our understanding of mechano-
therapeutics is still underdeveloped. Recent research has indicated that zinc may play a fundamental role in
the evolution of fracture repair. Zinc is known to stimulate new bone formation, preserve bone mass, and
regulate apoptosis. Importantly, intracellular zinc homeostasis must be carefully coordinated to regulate
uptake, excretion, and intracellular storage/trafficking. It is believed that zinc may be mechanosensitive;
however, the relationships between mechanical loading, zinc homeostasis, and fracture healing remain
unclear. This project will generate preliminary data regarding the relationships between mechanotransduction
in regenerative cells and establish links between mechanical load transfer and intracellular Zinc homeostasis in
bone fractures. Our global hypothesis is that the combination of zinc with mechanical loading will lead to
synergistic bone healing responses. In Aim 1, we will extend our existing K25 study with an in vivo rat femoral
osteotomy model and determine changes in bone healing caused by zinc delivery and load transfer. Sprague
Dawley rats will undergo femoral osteotomy and reconstruction. Mechanical loads across the callus will be
controlled with either rigid locking plates (0-3% strain, low load across fracture) or more compliant locking
plates (10-15% strain, high load across fracture). Zinc levels in animals will be manipulated systemically
(through diet) and locally (implantation of a non-loadbearing intramedullary nail). We hypothesize that the
combinatory application of mechanical loads and zinc delivery will lead to synergistic improvements in bone
healing that are demonstrated by faster and more robust development of callus. Changes in bone healing will
be quantified with micro-CT imaging, biomechanical testing, histology, and qPCR. In Aim 2, we will define the
causal relationships between zinc delivery, load transfer, zinc storage/trafficking, and osteoblast formation in
an in vitro cell culture model. Here, we will use cell culture techniques to examine the fate of human
mesenchymal stem cells. We hypothesize that Zinc-rich cells plated on stiff, smooth surfaces will elicit
improved osteoblastic proliferation and superior calcium matrix formation. These experiments will yield
fundamental new understanding into the mechanisms by which cells receive and respond to mechanical stimuli
and provide foundational data for long-term development of Zinc-augmented mechano-therapeutics.
Characterizing these relationships may have immense implications for cellular mechanobiology and
development of mechano-therapeutic approaches for bone regeneration and repair.
骨折是每年影响数百万人的常见损伤,
导致行动不便、长期护理甚至过早死亡。据了解,控制
机械加载可以提高骨折修复的质量和速度,但我们对机械加载的理解,
治疗方法仍然不发达。最近的研究表明,锌可能发挥了重要作用,
骨折修复的进展已知锌可刺激新骨形成,保持骨量,
调节细胞凋亡。重要的是,细胞内锌稳态必须仔细协调,以调节
摄取、排泄和细胞内储存/运输。认为锌可能是机械敏感的;
然而,机械负荷、锌稳态和骨折愈合之间的关系仍然存在,
不清楚该项目将产生关于机械传导之间关系的初步数据,
并建立机械负荷转移和细胞内锌稳态之间的联系,
骨折我们的总体假设是,锌与机械负荷的结合将导致
协同骨愈合反应。在目标1中,我们将扩展我们现有的K25研究,在体内大鼠股骨
截骨术模型,并确定锌输送和负荷转移引起的骨愈合变化。Sprague
道利大鼠将进行股骨截骨和重建。通过胼胝体的机械载荷将是
通过刚性锁定接骨板(0-3%应变,骨折端低载荷)或更柔顺的锁定进行控制
接骨板(10-15%应变,断裂处的高载荷)。动物体内的锌水平将被系统地操纵
(通过饮食)和局部(植入非承重髓内钉)。我们假设
机械负荷和锌递送的组合应用将导致骨的协同改善,
愈合,表现为愈伤组织的更快和更强大的发展。骨愈合的变化将
通过显微CT成像、生物力学测试、组织学和qPCR进行定量。在目标2中,我们将定义
锌的输送、负荷转移、锌的储存/运输和成骨细胞形成之间的因果关系
体外细胞培养模型。在这里,我们将使用细胞培养技术来研究人类的命运,
间充质干细胞。我们假设,将富含锌的细胞接种在坚硬光滑的表面上,
改善成骨细胞增殖和上级钙基质形成。这些实验将产生
对细胞接受和响应机械刺激的机制有了新的认识
并为锌增强力学疗法的长期发展提供基础数据。
表征这些关系可能对细胞机械生物学和
开发用于骨再生和修复的机械治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael William Hast其他文献
Michael William Hast的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael William Hast', 18)}}的其他基金
Modifying fragility fracture healing using a gradient-based mechanotransduction fixation approach
使用基于梯度的力传导固定方法改变脆性骨折愈合
- 批准号:
10627912 - 财政年份:2021
- 资助金额:
$ 16.25万 - 项目类别:
Modifying fragility fracture healing using a gradient-based mechanotransduction fixation approach
使用基于梯度的力传导固定方法改变脆性骨折愈合
- 批准号:
10301275 - 财政年份:2021
- 资助金额:
$ 16.25万 - 项目类别:
Modifying fragility fracture healing using a gradient-based mechanotransduction fixation approach
使用基于梯度的力传导固定方法改变脆性骨折愈合
- 批准号:
10440509 - 财政年份:2021
- 资助金额:
$ 16.25万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 16.25万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 16.25万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 16.25万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 16.25万 - 项目类别:
Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 16.25万 - 项目类别:
Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 16.25万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 16.25万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
- 批准号:
23KK0126 - 财政年份:2023
- 资助金额:
$ 16.25万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 16.25万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 16.25万 - 项目类别:
Training Grant