SMART Cancer Care Teams: Enhancing EHR Communication to Improve Interprofessional Teamwork

智能癌症护理团队:加强 EHR 沟通以改善专业间团队合作

基本信息

  • 批准号:
    10650869
  • 负责人:
  • 金额:
    $ 64.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

ABSTRACT Cancer continues to rank as the second leading cause of mortality in the US, with 1.8 million projected new cancer cases in 2020, and 606,520 cancer deaths. The National Academy of Medicine described a cancer care system in crisis, with interprofessional (IP) teamwork and coordination largely the exception rather than the rule. The National Cancer Institute prioritized the need to improve IP team-based cancer care. Aligned with these priorities, the overall goal of our research is to determine how IP teamwork affects quality outcomes and develop tools to improve teamwork in cancer care. The multiteam system (MTS) perspective offers a theoretical framework to examine IP work among multiple groups of healthcare professionals (HCPs). We propose to leverage social network analysis and machine learning (ML)-assisted visual analytics to extend our preliminary studies to examining theory-informed, targeted Electronic Health Record (EHR) network structures at three study sites that all use Epic. Our research centers on one modifiable dimension of team communication, information sharing through EHRs, with these aims: Aim 1: Develop new measures of within- and between-group EHR communication in cancer care MTSs. Aim 2: Determine the associations of targeted EHR communication structures with cancer care quality outcomes, specifically potentially preventable ED visits and unplanned hospitalizations. Aim 3: Develop ML-assisted visual analytics and prototype tools to (a) characterize MTSs, and (b) predict patients with EHR communication structures associated with poor quality outcomes. We will extract EHR data of patients with stage II or III breast, colorectal, and non-small cell lung cancer at three study sites (N=2,746). For each patient, using time-stamped EHR access-log data, we will construct a weighted communication network of her/his cancer care MTS to measure within- and between-group communication scores. We will apply zero-inflated Poisson models to analyze the associations of targetd EHR network structures with quality outcomes, controlling for medical complexity and social determinants of health. Leveraging Aim 2 results, and to lay the critical groundwork for Aim 3, we will conduct interviews and focus groups with HCPs, patients, and caregivers (N=90), to gain a more in-depth understanding of EHR communication structures. We will apply and extend graph neural networks (GNN) to predict patients who have EHR communication structures associated with poor outcomes as well as provide the reasoning behind the prediction. Furthermore, we will develop an algorithm to recommend potential communication structure changes that significantly reduce risk. This study addresses the National Research Council report underscoring the central role of visual analytics to support cognition, decision-making, and workflow optimization in healthcare. In a subsequent study, we will evaluate the effectiveness of ML-assisted visual analytics tools at improving patient outcomes and reducing costs.
摘要 癌症仍然是美国第二大死亡原因,预计2020年新增癌症病例将达到180万例,癌症死亡人数将达到606,520人。美国国家医学院描述了一个处于危机中的癌症护理系统,跨专业(IP)团队合作和协调在很大程度上是例外而不是规则。 国家癌症研究所优先考虑改善IP团队癌症护理的需要。与此同时, 我们研究的总体目标是确定知识产权团队合作如何影响质量成果, 改善癌症护理团队合作的工具。多团队系统(MTS)的角度提供了一个理论框架,以检查多组医疗保健专业人员(HCP)之间的IP工作。我们建议利用社会网络分析和机器 学习(ML)辅助的视觉分析,以扩展我们的初步研究,以检查三个研究站点的理论信息,有针对性的电子健康记录(EHR)网络结构,这些研究站点都使用Epic。我们的研究集中在团队沟通的一个可修改的维度上,通过EHR共享信息,目标是:目标1:在癌症护理MTS中开发组内和组间EHR沟通的新措施。目标二:确定目标EHR通信结构与癌症护理质量结果的关联,特别是潜在可预防的艾德就诊和计划外住院。目标3:开发ML辅助的可视化分析和原型工具,以(a)描述MTS的特征,(B)预测具有与不良质量结局相关的EHR通信结构的患者。我们将提取三个研究中心(N= 2,746)的II期或III期乳腺癌、结直肠癌和非小细胞肺癌患者的EHR数据。对于每个患者,使用带时间戳的EHR访问日志数据,我们将构建她/他的癌症护理MTS的加权通信网络,以测量组内和组间的通信分数。我们将应用零膨胀泊松模型来分析目标EHR网络结构与质量结果的关联,控制医疗复杂性和健康的社会决定因素。利用目标2的结果,并为目标3奠定关键基础,我们将与HCP,患者和护理人员(N=90)进行访谈和焦点小组,以更深入地了解EHR通信结构。我们将应用和扩展图神经网络(GNN)来预测具有与不良结果相关的EHR通信结构的患者,并提供预测背后的推理。此外,我们将开发一种算法,以推荐潜在的通信结构变化,从而显着降低风险。这项研究解决了国家研究理事会的报告,强调了视觉分析在支持医疗保健中的认知,决策和工作流程优化方面的核心作用。在随后的研究中,我们将评估ML辅助视觉分析工具在改善患者预后和降低成本方面的有效性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kwan-Liu Ma其他文献

Kwan-Liu Ma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kwan-Liu Ma', 18)}}的其他基金

SCH: Smart EHR Data Analytics to Enhance Cancer Care Multiteam Systems
SCH:智能 EHR 数据分析可增强癌症护理多团队系统
  • 批准号:
    10544322
  • 财政年份:
    2022
  • 资助金额:
    $ 64.47万
  • 项目类别:
SMART Cancer Care Teams: Enhancing EHR Communication to Improve Interprofessional Teamwork
智能癌症护理团队:加强 EHR 沟通以改善专业间团队合作
  • 批准号:
    10504435
  • 财政年份:
    2022
  • 资助金额:
    $ 64.47万
  • 项目类别:
SCH: Smart EHR Data Analytics to Enhance Cancer Care Multiteam Systems
SCH:智能 EHR 数据分析可增强癌症护理多团队系统
  • 批准号:
    10437166
  • 财政年份:
    2022
  • 资助金额:
    $ 64.47万
  • 项目类别:
SMART Cancer Care Teams: Enhancing EHR Communication to Improve Interprofessional Teamwork - Diversity Supplement
智能癌症护理团队:加强 EHR 沟通以改善专业间团队合作 - 多样性补充
  • 批准号:
    10816261
  • 财政年份:
    2022
  • 资助金额:
    $ 64.47万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了