Global Circuitry that Controls Acinetobacter Resistance and Virulence
控制不动杆菌耐药性和毒力的全球电路
基本信息
- 批准号:10651743
- 负责人:
- 金额:$ 39.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-26 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcinetobacterAcinetobacter baumanniiAnabolismAntibiotic ResistanceAntibiotic TherapyAntibioticsBacteriaBypassCell Membrane PermeabilityCell physiologyCellsClinicalDataDedicationsDefectDependenceDevelopmentDiseaseDrug resistanceFaceFailureGene FusionGenesGoalsGrowthHealthcareHeartHomeostasisHospitalsHumanImmuneImmune EvasionIn VitroInfectionInnate Immune SystemKnowledgeLesionLinkMembraneMembrane ProteinsMicrobeMicrobial BiofilmsModelingMultidrug-resistant AcinetobacterMusMutationNamesOrthologous GenePathogenicityPathway interactionsPatient IsolationPatientsPenetrationPermeabilityPharmaceutical PreparationsPhospholipidsPhosphorylationPredispositionProductionProtein BiosynthesisProteinsPublic HealthRegulationRegulonReporterResearchResistanceRibosomesSensorySepsisSignal TransductionStressSurfaceSystemTestingTranslational RepressionTreatment FailureVariantVirulenceVirulence FactorsVirulentWorkaddictionantimicrobialbasebiological adaptation to stresscandidate identificationcell envelopechemical geneticsdrug resistant bacteriadrug resistant pathogenenv Gene Productsexperimental studyextensive drug resistancegenetic regulatory proteininfection managementknock-downmembermicroorganismmortalitypathogenpromoterresponsetherapeutic targettransposon sequencing
项目摘要
PROJECT SUMMARY
Acinetobacter baumannii is among the most antibiotic-resistant pathogens known, and the
emergence of isolates with enhanced virulence poses an urgent public health challenge. Understanding
how the microorganism thwarts antibiotic and immune attack via its protective cell envelope is essential to
developing new strategies for controlling this threat. Envelope synthesis and integrity in bacteria are
typically maintained by a large number of response systems that control specific aspects of the envelope. A.
baumannii, however, has diverged substantially from this paradigm. The pathogen lacks orthologs of many
canonical envelope response proteins and instead relies on a single two-protein regulatory system to
globally modulate every layer of the envelope and control both antibiotic resistance and ability to
cause disease. This unique system, known as BfmRS, lowers susceptibility to a wide range of drugs,
antagonizes innate immune killing, and facilitates development of lethal disease in mice. Intriguingly, a
clinical isolate showing enhanced virulence requires the system for growth. BfmRS is therefore tightly linked
to the intractability of infections with the pathogen and represents a key potential therapeutic target. Despite
its fundamental importance, we lack an understanding of how the large BfmRS regulon controls broad-
range drug resistance and pathogenicity, and what signals the system senses. The objective of the
proposed studies is to understand how A. baumannii uses a single control circuit to simultaneously
modulate resistance and virulence. Our central hypothesis is that BfmRS jointly controls the barrier to both
drug penetration and innate immune attack by modulating the level of key outer membrane (OM) structures
in response to disruptions in envelope protein production. We will test this hypothesis by pursuing three
Aims, which build on our extensive preliminary data defining the BfmRS regulon and its chemical-genetic
profile, as well as the phosphorylation cascade it uses for signaling. In Aim 1 we will test the model that
BfmRS controls the bacterial interface with both antibiotics and innate immune effectors by modulating the
OM barrier. In Aim 2, we will identify the antibiotic-induced and intrinsic stress signals that are sensed by
BfmRS. In Aim 3, we will define the relationship between variability in BfmRS activity, growth-dependence,
and virulence across diverse patient isolates as a test of the model that variation in BfmRS signaling level is
a driver of enhanced virulence in invasive strains. This work will elucidate the mechanisms by which a
unique regulatory system controls both resistance and pathogenicity in a critically important nosocomial
microbe. These results will inform strategies for potentiating antibiotic and immune action for killing
extensively drug-resistant bacteria.
项目摘要
鲍曼不动杆菌是已知的最耐抗生素的病原体之一,
具有增强的毒力的分离物的出现对公共卫生构成了紧迫的挑战。理解
微生物如何通过其保护性细胞包膜阻止抗生素和免疫攻击是至关重要的,
制定新的战略来控制这一威胁。细菌中包膜的合成和完整性
通常由控制包络的特定方面的大量响应系统来维持。A.
然而,鲍曼尼的研究与这一范式有很大的不同。这种病原体缺乏许多
典型的包膜反应蛋白,而是依赖于一个单一的双蛋白调节系统,
全面调节包膜的每一层,控制抗生素耐药性和
导致疾病。这种独特的系统,被称为BfmRS,降低了对各种药物的敏感性,
拮抗先天性免疫杀伤,并促进小鼠致死性疾病的发展。有趣的是,A
显示增强的毒力的临床分离株需要用于生长的系统。因此,BfmRS与
与病原体感染的难治性有关,并且代表了关键的潜在治疗靶点。尽管
其根本的重要性,我们缺乏了解如何大BfmRS调节子控制广泛的-
范围耐药性和致病性,以及系统感知到的信号。的目的
研究目的是了解A.鲍曼尼使用单个控制电路同时
调节抗性和毒力。我们的中心假设是,BfmRS共同控制对两者的屏障,
通过调节关键外膜(OM)结构的水平,
以响应包膜蛋白生产的中断。我们将通过以下三个方面来检验这一假设:
目的,这是建立在我们广泛的初步数据,定义BfmRS调节子及其化学遗传学
以及它用于信号传导的磷酸化级联反应。在目标1中,我们将测试模型,
BfmRS通过调节细菌与抗生素和先天免疫效应子的相互作用来控制细菌与抗生素和先天免疫效应子的相互作用。
OM屏障。在目标2中,我们将识别通过以下方式感测到的应力诱导和内在应力信号:
BfmRS。在目标3中,我们将定义BfmRS活性的变异性、生长依赖性
作为BfmRS信号传导水平的变化是
是入侵菌株毒力增强的驱动因素。这项工作将阐明的机制,
独特的调节系统控制着一个至关重要的医院感染中的耐药性和致病性。
微生物这些结果将为加强抗生素和免疫作用的策略提供信息,
广泛耐药细菌。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A New Class of Cell Wall-Recycling l,d-Carboxypeptidase Determines β-Lactam Susceptibility and Morphogenesis in Acinetobacter baumannii.
- DOI:10.1128/mbio.02786-21
- 发表时间:2021-12-21
- 期刊:
- 影响因子:6.4
- 作者:Dai Y;Pinedo V;Tang AY;Cava F;Geisinger E
- 通讯作者:Geisinger E
Genome-wide phage susceptibility analysis in Acinetobacter baumannii reveals capsule modulation strategies that determine phage infectivity.
- DOI:10.1371/journal.ppat.1010928
- 发表时间:2023-06
- 期刊:
- 影响因子:6.7
- 作者:
- 通讯作者:
A conserved zinc-binding site in Acinetobacter baumannii PBP2 required for elongasome-directed bacterial cell shape.
- DOI:10.1073/pnas.2215237120
- 发表时间:2023-02-21
- 期刊:
- 影响因子:11.1
- 作者:Micelli, Carmina;Dai, Yunfei;Raustad, Nicole;Isberg, Ralph R.;Dowson, Christopher G.;Lloyd, Adrian J.;Geisinger, Edward;Crow, Allister;Roper, David I.
- 通讯作者:Roper, David I.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward Geisinger其他文献
Edward Geisinger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward Geisinger', 18)}}的其他基金
Global Circuitry that Controls Acinetobacter Resistance and Virulence
控制不动杆菌耐药性和毒力的全球电路
- 批准号:
10456181 - 财政年份:2021
- 资助金额:
$ 39.18万 - 项目类别:
Global Circuitry that Controls Acinetobacter Resistance and Virulence
控制不动杆菌耐药性和毒力的全球电路
- 批准号:
10279655 - 财政年份:2021
- 资助金额:
$ 39.18万 - 项目类别:
Type VI Protein Secretion in an Emerging Multidrug-Resistant Pathogen
新兴多重耐药病原体中的 VI 型蛋白分泌
- 批准号:
8450982 - 财政年份:2012
- 资助金额:
$ 39.18万 - 项目类别:
Type VI Protein Secretion in an Emerging Multidrug-Resistant Pathogen
新兴多重耐药病原体中的 VI 型蛋白分泌
- 批准号:
8254576 - 财政年份:2012
- 资助金额:
$ 39.18万 - 项目类别:
Type VI Protein Secretion in an Emerging Multidrug-Resistant Pathogen
新兴多重耐药病原体中的 VI 型蛋白分泌
- 批准号:
8681327 - 财政年份:2012
- 资助金额:
$ 39.18万 - 项目类别:
相似海外基金
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
- 批准号:
MR/Y008693/1 - 财政年份:2024
- 资助金额:
$ 39.18万 - 项目类别:
Research Grant
Generative machine learning for narrow spectrum antibiotic discovery against Acinetobacter baumannii
生成机器学习用于发现针对鲍曼不动杆菌的窄谱抗生素
- 批准号:
477936 - 财政年份:2023
- 资助金额:
$ 39.18万 - 项目类别:
Operating Grants
Conserved structural dynamics of outer-membrane channels in Acinetobacter baumannii as potential drug targets
鲍曼不动杆菌外膜通道的保守结构动力学作为潜在的药物靶点
- 批准号:
494854 - 财政年份:2023
- 资助金额:
$ 39.18万 - 项目类别:
Operating Grants
Defining key players at the host-pathogen interface during Acinetobacter baumannii infection
定义鲍曼不动杆菌感染期间宿主-病原体界面的关键参与者
- 批准号:
488684 - 财政年份:2023
- 资助金额:
$ 39.18万 - 项目类别:
Operating Grants
Study of clinically over-expressed and chimeric RND multidrug efflux pumps from Acinetobacter baumannii and Pseudomonas aeruginosa
鲍曼不动杆菌和铜绿假单胞菌临床过表达和嵌合 RND 多药外排泵的研究
- 批准号:
23K14346 - 财政年份:2023
- 资助金额:
$ 39.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Biomimetic Macrophage Membrane-Coated Nanosponges: A Novel Therapeutic for Multidrug-Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Hospital-Associated Pneumonia
仿生巨噬细胞膜包被的纳米海绵:一种治疗多重耐药铜绿假单胞菌和鲍曼不动杆菌医院相关肺炎的新疗法
- 批准号:
10674406 - 财政年份:2023
- 资助金额:
$ 39.18万 - 项目类别:
Using strain history to improve prediction of the evolution of antimicrobial resistance in Acinetobacter baumannii
利用菌株历史改进对鲍曼不动杆菌抗菌药物耐药性演变的预测
- 批准号:
10677362 - 财政年份:2023
- 资助金额:
$ 39.18万 - 项目类别:
Inhibitors of adaptive efflux mediated resistance in Acinetobacter baumannii
鲍曼不动杆菌适应性外排介导的耐药性抑制剂
- 批准号:
10625029 - 财政年份:2023
- 资助金额:
$ 39.18万 - 项目类别:
Identifying niche specific adaptations in Acinetobacter baumannii
鉴定鲍曼不动杆菌的生态位特异性适应
- 批准号:
10449699 - 财政年份:2022
- 资助金额:
$ 39.18万 - 项目类别:
Identifying niche specific adaptations in Acinetobacter baumannii
鉴定鲍曼不动杆菌的生态位特异性适应
- 批准号:
10596620 - 财政年份:2022
- 资助金额:
$ 39.18万 - 项目类别: