Smart Aspiration Catheter Based on Fiber Optic Pressure Sensing for Mechanical Thrombectomy in Stroke
基于光纤压力传感的智能抽吸导管用于中风机械血栓切除术
基本信息
- 批准号:10514898
- 负责人:
- 金额:$ 46.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAnimal ModelArteriesBloodBlood coagulationBrainCadaverCalibrationCathetersCause of DeathClinicClinicalCoagulation ProcessCollaborationsDataDeep Vein ThrombosisDevice or Instrument DevelopmentDevicesEngineeringEnvironmentExcisionExposure toFailureFiber OpticsFluoroscopyGoalsHumanInstitutesIntellectual PropertyInterventionIntracranial HemorrhagesIschemic StrokeKnowledgeLiquid substanceLocationMechanicsModalityModelingModernizationMonitorNatureOryctolagus cuniculusOutcomePhysiciansProceduresPublic HealthPulmonary EmbolismResearchRuptureSafetyScienceSideSolidStrokeStructureStudentsSystemTestingThrombectomyTimeTissuesTractionUncertaintyVacuumWithdrawalWorkbaseclinical translationclinically relevantclinically significantcommercializationdesigndisabilityeffective interventionexperienceimprovedin vivoin vivo monitoringinnovationmedical schoolspedagogypressurepressure sensorprototypesafety testingsensorsensor technologysocioeconomicsstandard of carestroke therapysuccesstheoriesundergraduate researchundergraduate student
项目摘要
PROJECT SUMMARY/ABSTRACT
Acute ischemic stroke is a leading cause of death and disability worldwide and creates a massive
socioeconomic burden. The current standard of care of the ischemic stroke caused by large vessel occlusion
is mechanical thrombectomy. This neuro-interventional procedure delivers a catheter into the occluded artery
and applies aspiration to engage and remove the blood clot. However, during thrombectomy, the physicians
have no reliable way to judge the status of the catheter interaction with the blood clot, leading to uncertainty,
multiple attempts, and an unnecessarily high rate of complications, and poor outcomes. The goal of this study
is to provide real-time data informing the interventionalist of the catheter/clot/artery interaction during
thrombectomy for safe and effective clot removal in stroke treatment. To achieve this goal, a smart aspiration
catheter with fiber optic pressure sensors integrated near the tip will be designed, prototyped, and validated to
identify 1) a gap between the catheter tip and clot, 2) a jam of catheter with a stiff clot, 3) the collapse of an
artery, and 4) the breakage of an engaged clot. These four types of interaction have been observed to be
associated with thrombectomy failure and complications in a human cadaveric study. Three specific aims are
proposed. In Aim 1, two types of fiber optic pressure sensors with front and side sensing orientations will be
designed for catheter integration. These sensors will be fabricated and experimentally calibrated. In Aim 2, the
smart catheter with sensor locations, sensing orientations, and ranges will be designed based on a fluid-
structure interaction model that calculates the pressure distribution near the catheter tip during the
aforementioned four types of catheter-tissue interaction in mechanical thrombectomy. The catheter will be
prototyped and evaluated using an engineering bench-top phantom system. In Aim 3, the safety and efficacy
of the smart catheter will be validated in human cadaveric brain and rabbit models at Mayo Clinic. This
proposed research is innovative, because it makes the current thrombectomy system “smarter” while most
ongoing effort in thrombectomy device development focuses on a “stronger” aspiration, and because it is the
first of its kind to apply fiber optic pressure sensing to real-time thrombectomy monitoring. This project is
significant, because it enables a data-driven, informed, safe, and effective thrombectomy for stroke treatment
with potential applications in pulmonary embolism and deep vein thrombosis. This study is designed to
strengthen the research environment and support undergraduate student research at Worcester Polytechnic
Institute (WPI). The transdisciplinarity of this project is invaluable to expose students to modern research
strategy and attractive to undergraduate students. This research combines theory and practice, aligning well
with WPI undergraduate educational goal. The collaboration with Mayo Clinic, a national top medical school,
strongly strengthens the research environment and the clinical translation potential at WPI.
项目摘要/摘要
急性缺血性中风是世界范围内死亡和残疾的主要原因,
社会经济负担。大血管闭塞所致缺血性脑卒中的现行治疗标准
就是机械血栓切除术这种神经介入手术将导管输送到闭塞的动脉中
并施加抽吸以接合并去除血块。然而,在血栓切除术中,医生
没有可靠的方法来判断导管与血凝块相互作用的状态,导致不确定性,
多次尝试,以及不必要的高并发症率和不良结果。本研究的目的
提供实时数据,告知介入医生导管/凝块/动脉相互作用,
血栓切除术在卒中治疗中安全有效地清除凝块。为了实现这一目标,一个聪明的愿望
将设计、制作原型并确认在头端附近集成有光纤压力传感器的导管,
识别1)导管头端和凝块之间的间隙,2)导管堵塞和硬凝块,3)
动脉,以及4)接合的凝块的破裂。已经观察到这四种类型的相互作用是
与血栓切除术失败和人类尸体研究中的并发症相关。三个具体目标是
提出了在目标1中,将使用具有正面和侧面感测取向的两种类型的光纤压力传感器。
设计用于导管集成。这些传感器将被制造和实验校准。在目标2中,
具有传感器位置、感测方向和范围的智能导管将基于流体设计,
结构相互作用模型,用于计算
机械血栓切除术中的上述四种类型的导管-组织相互作用。导管将
使用工程台式体模系统进行原型制作和评估。在目标3中,
将在马约诊所的人类尸体大脑和兔子模型中验证智能导管的有效性。这
拟议的研究是创新的,因为它使目前的血栓切除系统“更聪明”,而大多数
血栓切除术器械开发的持续努力集中在“更强”的抽吸上,
首次将光纤压力传感应用于血栓切除术的实时监测。这个项目是
意义重大,因为它能够为卒中治疗提供数据驱动、知情、安全和有效的血栓切除术
在肺栓塞和深静脉血栓形成中具有潜在的应用。本研究旨在
加强研究环境,支持伍斯特理工学院的本科生研究
研究所(WPI)。这个项目的跨学科性对于让学生接触现代研究是非常宝贵的
策略和吸引力的本科生。本研究将理论与实践相结合,
WPI本科教育目标。与全国顶尖医学院马约诊所的合作,
这大大加强了WPI的研究环境和临床翻译潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuxiang Liu其他文献
Yuxiang Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 46.01万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 46.01万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 46.01万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 46.01万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 46.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 46.01万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 46.01万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 46.01万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 46.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 46.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists