Investigation of the G protein-coupled receptor FSHR-1 in multi-tissue neuromuscular signaling in normal and oxidative stress conditions
正常和氧化应激条件下 G 蛋白偶联受体 FSHR-1 在多组织神经肌肉信号传导中的研究
基本信息
- 批准号:10515156
- 负责人:
- 金额:$ 42.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-20 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcetylcholineAdenylate CyclaseAgingAnimal ModelAnimalsBehaviorBehavior DisordersBehavioral AssayBindingBiochemicalBiologyBrainCaenorhabditis elegansCalciumCellsCommunicationDataDefectDepressive disorderDiseaseExhibitsFamilyFluorescenceFunctional disorderG-Protein-Coupled ReceptorsGTP-Binding Protein alpha Subunits, GsGenesGeneticGenetic EpistasisGlycopeptidesGoalsHomologous GeneHormone ReceptorHumanImageImpairmentInfectionInflammationIntercellular JunctionsIntestinesInvestigationKnowledgeLigandsLinkLipidsMass Spectrum AnalysisMediatingMental DepressionMethodsMissionModelingModificationMolecularMood DisordersMotor NeuronsMusMuscleNematodaNervous System PhysiologyNeurodegenerative DisordersNeurogliaNeurologicNeuromuscular JunctionNeuronsNeuropeptidesNeurosecretory SystemsOrganismOrthologous GeneOxidative StressPathway interactionsPeptidesPhosphotransferasesPhylogenyPhysiologyProcessPublic HealthReagentRegulationResearchRoleSignal PathwaySignal TransductionSiteStressStructureSynapsesSynaptic TransmissionSynaptic VesiclesTestingTissuesUnited States National Institutes of HealthWorkbasebiological adaptation to stressburden of illnesscell typecholinergicexperienceexperimental studyfluorescence imaginggenome editinggonad developmentgonad functionhuman diseaseinnovationloss of functionmutantnervous system disorderneuromuscularneurotransmissionnovelnovel therapeuticsoxidative damageprotein degradationresponsetissue stresstransmission processundergraduate studentvesicular release
项目摘要
PROJECT SUMMARY/ABSTRACT
Neurological and neurodegenerative disorders characterized by imbalances in synaptic transmission are often
linked to oxidative damage. Modification of synaptic signaling in the face of damage is critical for nervous
system function. Inter-tissue signaling is key to stress-induced synaptic modulation, but is not fully understood.
My long-term goal is to determine the molecular mechanisms controlling synaptic transmission in the presence
and absence of oxidative stress. G protein-coupled receptors (GPCRs) are regulators of synaptic transmission
and multi-tissue stress responses, yet the details of relevant GPCR pathways are largely unknown. Recent
work from my lab and others identified roles for the conserved GPCR FSHR-1 in regulating neuromuscular
signaling and oxidative stress responses. FSHR-1 is the sole C. elegans homolog of a family of mammalian
glycopeptide (GP) hormone receptors that control gonad development and function; Fshr deficiency is linked to
depression and brain oxidative stress in mice. In C. elegans, intestinal FSHR-1 promotes organism survival
during infection and oxidative stress; neuronal FSHR-1 can cell non-autonomously regulate intestinal oxidative
stress responses. My lab found that fshr-1 null animals have neuromuscular defects exacerbated by oxidative
stress, but where and how FSHR-1 regulates synaptic signaling under normal or stress conditions and the
mechanisms by which FSHR-1 is activated are unknown. The objective of this proposal is to determine how
FSHR-1 controls signaling at the C. elegans neuromuscular junction (NMJ) via activities in multiple cell types in
the presence and absence of oxidative stress. My preliminary data indicate FSHR-1 can act in neurons and the
intestine to promote muscle excitation. Our data further indicate this effect may be due to FSHR-1’s ability to
act cell non-autonomously to promote cholinergic synaptic vesicle release from motor neurons and suggest a
candidate GP ligand and downstream signaling pathways FSHR-1 may use exert to its effects at the NMJ. My
central hypothesis is that FSHR-1 acts in a subset of non-NMJ cells downstream of the -GP FLR-2 and/or
other peptide ligands to activate pathways involving GS and/or the lipid kinase SPHK-1 to indirectly promote
acetylcholine release and muscle excitation. Aim 1 will use genome editing, fluorescence localization and
calcium imaging, cell-specific protein degradation, and behavior to determine neuronal and non-neuronal sites
of FSHR-1 action in controlling NMJ function in normal and oxidative stress conditions. Aim 2 will use genetics,
imaging, and behavior to determine if downstream FSHR-1 effectors in other contexts mediate FSHR-1’s
effects on NMJ activity. Aim 3 will use complementary genetic epistasis and biochemical approaches to identify
FSHR-1 ligands relevant for its NMJ effects. This research is innovative in its use of a whole animal model to
explore inter-tissue signaling by a conserved GPCR regulating synaptic transmission in diverse conditions. It is
significant in defining novel roles for FSHR-1, which controls diverse processes across phylogeny, and may lay
groundwork for new therapies for synaptic dysfunction and oxidative stress, hallmarks of aging and disease.
项目总结/摘要
以突触传递不平衡为特征的神经系统和神经退行性疾病通常是
与氧化损伤有关。面对损伤时突触信号的改变对于神经系统的恢复至关重要。
系统功能组织间信号传导是应激诱导的突触调节的关键,但尚未完全理解。
我的长期目标是确定存在时控制突触传递的分子机制
和不存在氧化应激。G蛋白偶联受体(GPCRs)是突触传递的调节因子
和多组织应激反应,但相关的GPCR途径的细节在很大程度上是未知的。最近
我的实验室和其他人的工作确定了保守的GPCR FSHR-1在调节神经肌肉中的作用
信号传导和氧化应激反应。FSHR-1是唯一的C.一个哺乳动物家族的同源体
控制性腺发育和功能的糖肽(GP)激素受体; FSHR缺乏与
抑郁症和脑氧化应激。In C.肠道FSHR-1促进机体存活
在感染和氧化应激过程中,神经元型FSHR-1可以非自主地调节肠道氧化应激,
应激反应我的实验室发现fshr-1缺失的动物有神经肌肉缺陷,
应激,但在正常或应激条件下,FSHR-1在何处以及如何调节突触信号,
FSHR-1被激活的机制尚不清楚。本提案的目的是确定如何
FSHR-1在C.神经肌肉接头(NMJ)通过多种细胞类型的活动,
是否存在氧化应激。我的初步数据表明FSHR-1可以在神经元中起作用,
肠,以促进肌肉兴奋。我们的数据进一步表明,这种效应可能是由于FSHR-1的能力,
作用细胞非自主地促进胆碱能突触囊泡从运动神经元释放,并建议
FSHR-1可能通过GP候选配体及其下游信号通路发挥其对NMJ的作用。我
中心假设是FSHR-1作用于NM-GP FLR-2下游的非NMJ细胞亚群,和/或
其它肽配体激活涉及GdS和/或脂质激酶SPHK-1的途径,以间接促进
乙酰胆碱释放和肌肉兴奋。Aim 1将使用基因组编辑、荧光定位和
钙成像、细胞特异性蛋白质降解和确定神经元和非神经元位点的行为
FSHR-1在正常和氧化应激条件下控制NMJ功能的作用。目标2将使用遗传学,
成像和行为,以确定下游FSHR-1效应物在其他情况下是否介导FSHR-1的
对NMJ活性的影响目的3将使用互补的遗传上位性和生物化学方法来鉴定
FSHR-1配体与其NMJ效应相关。这项研究在使用整个动物模型方面具有创新性,
探索在不同条件下通过保守的GPCR调节突触传递的组织间信号传导。是
在定义FSHR-1的新作用方面具有重要意义,FSHR-1控制着整个胚胎发育的不同过程,
为突触功能障碍和氧化应激的新疗法奠定了基础,这些都是衰老和疾病的标志。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Kowalski其他文献
Jennifer Kowalski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Kowalski', 18)}}的其他基金
Investigation of Anaphase Promoting Complex function in synaptic transmission
突触传递后期促进复合体功能的研究
- 批准号:
8287906 - 财政年份:2012
- 资助金额:
$ 42.23万 - 项目类别:
相似海外基金
Neuroendocrine regulation of energy metabolism: role of pituitary adenylate cyclase-activating polypeptide (PACAP) in the thermoregulatory cascade
能量代谢的神经内分泌调节:垂体腺苷酸环化酶激活多肽(PACAP)在温度调节级联中的作用
- 批准号:
RGPIN-2021-04040 - 财政年份:2022
- 资助金额:
$ 42.23万 - 项目类别:
Discovery Grants Program - Individual
Controlled Release of Pituitary Adenylate Cyclase Activating Polypeptide from a Hydrogel-Nanoparticle Delivery Vehicle for Applications in the Central Nervous System
从水凝胶-纳米粒子递送载体中控制释放垂体腺苷酸环化酶激活多肽,用于中枢神经系统的应用
- 批准号:
547124-2020 - 财政年份:2022
- 资助金额:
$ 42.23万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Controlled Release of Pituitary Adenylate Cyclase Activating Polypeptide from a Hydrogel-Nanoparticle Delivery Vehicle for Applications in the Central Nervous System
从水凝胶-纳米粒子递送载体中控制释放垂体腺苷酸环化酶激活多肽,用于中枢神经系统的应用
- 批准号:
547124-2020 - 财政年份:2021
- 资助金额:
$ 42.23万 - 项目类别:
Postgraduate Scholarships - Doctoral
Neuroendocrine regulation of energy metabolism: role of pituitary adenylate cyclase-activating polypeptide (PACAP) in the thermoregulatory cascade
能量代谢的神经内分泌调节:垂体腺苷酸环化酶激活多肽(PACAP)在温度调节级联中的作用
- 批准号:
RGPIN-2021-04040 - 财政年份:2021
- 资助金额:
$ 42.23万 - 项目类别:
Discovery Grants Program - Individual
The Molecular Mechanism of the Secretion of the Bacterial Toxin Adenylate Cyclase
细菌毒素腺苷酸环化酶分泌的分子机制
- 批准号:
451966 - 财政年份:2021
- 资助金额:
$ 42.23万 - 项目类别:
Operating Grants
The role of prefrontostriatal Pituitary Adenylate Cyclase Activating Polypeptide in excessive and compulsive ethanol drinking
前额纹状体垂体腺苷酸环化酶激活多肽在过量和强迫性乙醇饮酒中的作用
- 批准号:
10455587 - 财政年份:2020
- 资助金额:
$ 42.23万 - 项目类别:
The role of prefrontostriatal Pituitary Adenylate Cyclase Activating Polypeptide in excessive and compulsive ethanol drinking
前额纹状体垂体腺苷酸环化酶激活多肽在过量和强迫性乙醇饮酒中的作用
- 批准号:
10261394 - 财政年份:2020
- 资助金额:
$ 42.23万 - 项目类别:
Diagnosis and therapeutic effect of neurally mediated syncope (NMS) using fluctuation of adenylate cyclase activity
利用腺苷酸环化酶活性波动对神经介导性晕厥(NMS)的诊断和治疗效果
- 批准号:
20K08498 - 财政年份:2020
- 资助金额:
$ 42.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pituitary adenylate cyclase-activating polypeptide 27 in the paraventricular thalamus and its projections: Role in ethanol drinking
室旁丘脑中的垂体腺苷酸环化酶激活多肽 27 及其预测:在乙醇饮用中的作用
- 批准号:
10380126 - 财政年份:2020
- 资助金额:
$ 42.23万 - 项目类别:
The role of prefrontostriatal Pituitary Adenylate Cyclase Activating Polypeptide in excessive and compulsive ethanol drinking
前额纹状体垂体腺苷酸环化酶激活多肽在过量和强迫性乙醇饮酒中的作用
- 批准号:
10662279 - 财政年份:2020
- 资助金额:
$ 42.23万 - 项目类别:














{{item.name}}会员




