Modulation of Network Feedback Shifts the Locus of Rhythm Generation
网络反馈的调制改变了节奏生成的轨迹
基本信息
- 批准号:10515097
- 负责人:
- 金额:$ 42.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:Afferent NeuronsBehaviorBiologicalBiological ModelsBrain StemBreathingCancer borealisCommunicationCongenital DisordersCrabsCrustaceaDataData AnalysesDeglutitionDistantElectrophysiology (science)FeedbackFunctional disorderFutureGenerationsHealthHybridsIn VitroInjuryInterneuronsInvertebratesInvestigationLeadLinkLocationLocomotionManuscriptsMasticationMentorsMetabolicMotorMusNatureNervous system structureNeuronsNeurosciences ResearchOralOutputPathway interactionsPeriodicityPhysiologicalPopulationPreparationProprioceptorQuality of lifeRegulationResearchSensorySiteSpatial DistributionStimulusStomachStrokeStudentsSynapsesSynaptic TransmissionSystemTechniquesTestingTrainingUniversitiesWalkingWorkbasecentral pattern generatorcomputer studiesdoctoral studentexperienceextracellularfeedingflexibilityinnovationinsightnervous system disorderneural networknoveloutreachrecruitrespiratoryskillssymposiumundergraduate student
项目摘要
Central pattern generator (CPG) networks control important rhythmic behaviors such as chewing, breathing,
and locomotion. CPGs must continuously adapt to physiological and environmental challenges, conveyed via
sensory pathways, to maintain healthy function. Dysfunction of CPGs or their inputs due to neurological
disorders or stroke-induced damage alters CPG function and adaptability, which decreases health and quality
of life. One way in which CPG networks adapt is through changes in the spatial distribution of their active
components, such as mammalian respiratory CPG activity varying along a brainstem column. However, little is
known about the cellular-level mechanisms by which sensory pathways trigger changes in the spatial
distribution of CPGs, and how such changes may alter the mechanisms of rhythm generation. Sensory
pathways influence CPGs directly or by activating projection neuron inputs to CPGs. Projection neuron activity,
which is further regulated by synaptic feedback from their target CPGs, determines CPG output. CPG
feedback strength is flexible, and feedback can link different nervous system regions. Thus, the central
hypothesis of this proposal is that sensory modulation of CPG feedback can alter rhythm generation
locus and mechanism. Small invertebrate neural networks have enabled much insight into network plasticity
due to having fewer neurons with well-described connectivity, and complete CPGs that can be maintained in
vitro. In this proposal, an in vitro stomatogastric nervous system (STNS) preparation from the crab (Cancer
borealis) will provide exceptional access to identified sensory, chewing CPG, feedback, and projection
neurons. Sensory activation of distinct chewing rhythms, photoinactivation of identified neurons and neuronal
compartments, hybrid computational-biological networks, and independent manipulation of local and distant
synaptic actions of a feedback neuron will be used to identify cellular and synaptic mechanisms controlling
rhythm generation locus in different modulatory states. It is expected that a novel mechanism for altering CPG
spatial distribution will be identified, namely modulation of CPG feedback strength and incorporation of this
feedback into rhythm generation. It is further predicted that altering rhythm generation locus in this manner is a
novel mechanism for regulating the access of sensory pathways to a motor system. An increased cellular-level
understanding of the dynamics of rhythm generation locus is important for future investigation into how
damage or dysfunction may change CPG adaptability. Identifying novel principles in a small well-defined
system will guide studies of interactions between sensory and CPG feedback pathways that regulate CPG
spatial distribution in larger nervous systems during both functional and dysfunctional states. Further, this
proposal will provide research and networking opportunities for students, including experience in cutting-edge
electrophysiological techniques, quantitative data analysis skills, and oral and written scientific communication
skills, helping to fill a large, unmet demand for neuroscience research opportunities at Miami University.
中央模式发生器(CPG)网络控制重要的节律行为,如咀嚼,呼吸,
和运动。CPG必须不断适应生理和环境挑战,通过
感官通路,以维持健康的功能。由于神经系统疾病引起的CPG或其输入功能障碍
疾病或中风引起的损伤改变CPG功能和适应性,从而降低健康和质量
生命CPG网络适应的一种方式是通过改变它们的活性蛋白的空间分布,
成分,如哺乳动物呼吸CPG活性沿脑干柱沿着变化。然而,
已知细胞水平的机制,通过该机制,感觉通路触发空间的变化,
CPG的分布,以及这些变化如何改变节律产生的机制。感官
通路直接或通过激活投射神经元对CPG的输入来影响CPG。投射神经元活动,
其进一步由来自其目标CPG的突触反馈调节,确定CPG输出。CPG
反馈的强度是灵活的,反馈可以连接不同的神经系统区域。因此,中央
该建议假设是CPG反馈的感觉调制可以改变节律产生
轨迹与机制小型无脊椎动物神经网络使人们对网络可塑性有了更深入的了解
由于具有较少的具有良好描述的连接性的神经元,以及可以在
体外在这项建议中,在体外口胃神经系统(STNS)制备从螃蟹(癌症),
borealis)将提供特殊的访问识别的感觉,咀嚼CPG,反馈和投影
神经元不同咀嚼节律的感觉激活,识别的神经元和神经元的光失活,
隔间,混合计算-生物网络,以及独立操纵本地和远程
反馈神经元的突触动作将用于识别控制神经元的细胞和突触机制。
不同调节状态下的节律产生轨迹。预期改变CPG的新机制
将识别空间分布,即CPG反馈强度的调制和该反馈强度的并入。
反馈到节奏生成中。进一步预测,以这种方式改变节律产生位点是一种有效的方法。
调节感觉通路进入运动系统的新机制。增加的细胞水平
了解节奏产生轨迹的动力学对于将来研究如何产生节奏是很重要的。
损伤或功能障碍可改变CPG适应性。在一个小的定义明确的
该系统将指导对调节CPG的感觉和CPG反馈通路之间相互作用的研究
空间分布在较大的神经系统在功能和功能障碍状态。此外,这
该提案将为学生提供研究和网络机会,包括尖端技术的经验。
电生理技术,定量数据分析技能,口头和书面科学交流
技能,帮助填补了大量的,未满足的需求神经科学研究的机会,在迈阿密大学。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAWN MARIE BLITZ其他文献
DAWN MARIE BLITZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAWN MARIE BLITZ', 18)}}的其他基金
CELLULAR MECHANISMS OF RESPIRATORY NETWORK MODULATION
呼吸网络调节的细胞机制
- 批准号:
6183523 - 财政年份:2000
- 资助金额:
$ 42.06万 - 项目类别:
CELLULAR MECHANISMS OF RESPIRATORY NETWORK MODULATION
呼吸网络调节的细胞机制
- 批准号:
2796056 - 财政年份:1998
- 资助金额:
$ 42.06万 - 项目类别:
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
METABOLISM: accelerator Mass SpEctrometry to quanTify nanoplastics and decipher their fAte and Behavior in envirOnmentaL and bIological SysteMs
代谢:加速器质谱法可量化纳米塑料并破译其在环境和生物系统中的命运和行为
- 批准号:
EP/Y002733/1 - 财政年份:2024
- 资助金额:
$ 42.06万 - 项目类别:
Research Grant
REU Site: Ecology, Evolution, and Behavior Field Research at Mountain Lake Biological Station
REU 站点:山湖生物站的生态、进化和行为领域研究
- 批准号:
2349462 - 财政年份:2024
- 资助金额:
$ 42.06万 - 项目类别:
Standard Grant
BRITE Pivot: Growing Biological Methods to Improve Soil Behavior for Infrastructure Protection
BRITE 支点:不断发展生物方法来改善土壤行为以保护基础设施
- 批准号:
2227491 - 财政年份:2023
- 资助金额:
$ 42.06万 - 项目类别:
Standard Grant
Biological Mechanisms of Suicidal Behavior among Sexual Minority Adolescents - Supplement
性少数青少年自杀行为的生物学机制 - 补充
- 批准号:
10823709 - 财政年份:2023
- 资助金额:
$ 42.06万 - 项目类别:
The role of biological interactions in the evolution of animal behavior
生物相互作用在动物行为进化中的作用
- 批准号:
RGPIN-2019-06689 - 财政年份:2022
- 资助金额:
$ 42.06万 - 项目类别:
Discovery Grants Program - Individual
The virtual rodent: a platform to study the artificial and biological control of natural behavior
虚拟啮齿动物:研究自然行为的人工和生物控制的平台
- 批准号:
10540574 - 财政年份:2022
- 资助金额:
$ 42.06万 - 项目类别:
The Virtual Rodent: A Platform to Study the Artificial and Biological Control of Natural Behavior
虚拟啮齿动物:研究自然行为的人工和生物控制的平台
- 批准号:
10633144 - 财政年份:2022
- 资助金额:
$ 42.06万 - 项目类别:
Schooling through Vortex Streets; A Biological and Computational Approach to Understanding Collective Behavior in Wild Fish
通过涡街 (Vortex Street) 上学;
- 批准号:
2102891 - 财政年份:2021
- 资助金额:
$ 42.06万 - 项目类别:
Continuing Grant
The role of biological interactions in the evolution of animal behavior
生物相互作用在动物行为进化中的作用
- 批准号:
RGPIN-2019-06689 - 财政年份:2021
- 资助金额:
$ 42.06万 - 项目类别:
Discovery Grants Program - Individual
REU Site: Biological Basis of Social Behavior
REU 网站:社会行为的生物学基础
- 批准号:
1852338 - 财政年份:2020
- 资助金额:
$ 42.06万 - 项目类别:
Continuing Grant