Mechano signals regulating tendon and ligament homeostasis

机械信号调节肌腱和韧带稳态

基本信息

  • 批准号:
    10522344
  • 负责人:
  • 金额:
    $ 39.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-20 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT Mechano-stimulation in the musculoskeletal system plays a major role in the homeostasis of all tissues and organs. Particularly in tendons, the proper physiologic exercise load has an anabolic effect with increased tenogenic gene expression in humans; however, the molecular mechanisms that sense mechanical stimuli remain unclear. Piezo1 is a mechano-sensitive ion channel involved in mechano-sensing in various organs and tissues; however, it has not yet been examined in tendons or ligaments. In mice, the R2482H mutation of Piezo1 is an active form mimicking a gain-of-function (GOF) PIEZO1 variant found in humans. To test the potential effects of Piezo1 in physical performance, we generated systemic GOF Piezo1 (Piezo1systemic-GOF) mice, muscle-specific GOF Piezo1 (Piezo1muscle-GOF) mice, and tendon-specific GOF Piezo1 (Piezo1tendon-GOF) mice and found that the jumping power of Piezo1tendon-GOF mice as well as Piezo1systemic-GOF mice at 12-weeks- old was ~1.6 times greater than in both wild-type mice and Piezo1muscle-GOF mice. Consistent with this, significantly altered macroscopic and histological phenotypes were observed in the tendons of Piezo1tendon-GOF mice with increased tendon-specific gene expression. We also found that upregulation of aging related ossification gene expression was significantly reduced in aged Piezo1tendon-GOF mice. This suggests that constitutively enhanced PIEZO1 activity promotes physical performance via tendons/ligaments. These preliminary data underlie our hypothesis that PIEZO1 acts as a critical mechano-sensor in tenocytes, maintaining and promoting tendon/ligament functions by orchestrating tendon/ligament-specific gene expression. To test this hypothesis, we will pursue the following Aims: Aim 1: Analyze the function of Piezo1 in human and mouse tendon homeostasis and aging. We will examine the function of Piezo1 in tenocytes for tendon homeostasis and in aging by morphological, histological and gene expression analysis of tendons from Piezo1tendon-GOF mice and tendon specific loss of function (LOF) Piezo1 (Piezo1tendon-LOF) mice at different aging points. We will also test the role of PIEZO1 in human tenocytes by transcriptome analysis with PIEZO1 siRNA knockdown or a small molecule PIEZO1 activator. Aim 2: Evaluate the role of Piezo1 in tenocytes on physiological performance and exercise in mice. We will evaluate the role of Piezo1 in tenocytes to potentiate physical performance using postnatally induced tendon specific gain of function and loss of function Piezo1 mice at different ages. Thereafter, we will examine whether this physical ability could be strengthened by physiological exercise inducing anabolic mechanical stimulation. Aim 3: Analyze the biomechanical properties of tendon that are regulated by Piezo1. We will uncover how the kinetic energy for the enhanced jumping ability of the Piezo1tendon-GOF mouse is produced by biomechanical analysis of tendon stored energy and muscle contraction power. Completion of these aims will support the concept that Piezo1 could be a therapeutic target to maintain or enhance structure and function of the musculoskeletal system.
抽象的 肌肉骨骼系统中的机械刺激在所有组织的稳态中起主要作用 器官。特别是在肌腱中,适当的生理运动负荷具有合成代谢作用,增加 人类中的宁量基因表达;但是,感知机械刺激的分子机制 保持不清楚。压电1是一种机械敏感的离子通道,涉及各种器官和 组织;但是,尚未在肌腱或韧带中检查它。在小鼠中,R2482H突变 压电1是一种活跃形式,模仿了人类中发现的功能获得(GOF)压电。测试 压电1在身体性能中的潜在影响,我们产生了全身性GOF压电(Piezo1Syeric-GOF) 小鼠,肌肉特异性GOF Piezo1(Piezo1muscle-GOF)小鼠和肌腱特异性的GoF Piezo1(Piezo1tendon-GOF) 小鼠发现Piezo1tendon-Gof小鼠的跳跃能力以及12周的Piezo1Syeric-Gof小鼠 - 旧的小鼠和压电1Muscle-gof小鼠的旧老鼠大约1.6倍。与此一致 在Piezo1Tendon-GOF的肌腱中观察到了显着改变的宏观和组织学表型 肌腱特异性基因表达增加的小鼠。我们还发现与衰老相关的上调 在老化的Piezo1Tendon-GOF小鼠中,骨化基因表达显着降低。这表明这一点 组成性增强的压电活动通过肌腱/韧带促进身体性能。这些 我们的初步数据是我们的假设,即Piezo1是Tenocytes中的关键机械传感器, 通过编排肌腱/韧带特异性基因来维持和促进肌腱/韧带功能 表达。为了检验这一假设,我们将追求以下目的:目标1:分析功能 人和小鼠肌腱稳态和衰老中的压电。我们将检查压电1的功能 肌腱稳态和衰老的替核细胞通过形态学,组织学和基因表达分析 来自Piezo1Tendon-GoF小鼠的肌腱和肌腱特异性功能(LOF)Piezo1(Piezo1tendon-lof)小鼠在 不同的老化点。我们还将通过转录组分析与 压电1 siRNA敲低或小分子压电激活剂。目标2:评估压电1在 小鼠的生理性能和运动的养细胞。我们将评估压电1在 使用产后诱导肌腱特异性功能增益和 在不同年龄段的功能压电小鼠的功能丧失。此后,我们将检查这种身体能力是否可以 通过生理运动诱导合成代谢机械刺激来加强。目标3:分析 肌腱的生物力学特性受压电调节。我们将发现动能如何 为了增强了压电1 tendon-gof小鼠的跳跃能力,通过肌腱的生物力学分析产生 存储能量和肌肉收缩能力。这些目标的完成将支持Piezo1的概念 可以是维持或增强肌肉骨骼系统结构和功能的治疗靶标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HIROSHI ASAHARA其他文献

HIROSHI ASAHARA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HIROSHI ASAHARA', 18)}}的其他基金

Mechano signals regulating tendon and ligament homeostasis
机械信号调节肌腱和韧带稳态
  • 批准号:
    10707502
  • 财政年份:
    2022
  • 资助金额:
    $ 39.05万
  • 项目类别:
Transcription factor Mohawk in tendon and ligament degeneration and regeneration
转录因子莫霍克在肌腱和韧带退化和再生中的作用
  • 批准号:
    8722781
  • 财政年份:
    2014
  • 资助金额:
    $ 39.05万
  • 项目类别:
Transcription factor Mohawk in tendon and ligament degeneration and regeneration
转录因子莫霍克在肌腱和韧带退化和再生中的作用
  • 批准号:
    9064632
  • 财政年份:
    2014
  • 资助金额:
    $ 39.05万
  • 项目类别:
The Role of MicroRNA in Rheumatoid Arthritis Pathogenesis
MicroRNA 在类风湿关节炎发病机制中的作用
  • 批准号:
    7793402
  • 财政年份:
    2009
  • 资助金额:
    $ 39.05万
  • 项目类别:
The Role of MicroRNA in Rheumatoid Arthritis Pathogenesis
MicroRNA 在类风湿关节炎发病机制中的作用
  • 批准号:
    7587214
  • 财政年份:
    2009
  • 资助金额:
    $ 39.05万
  • 项目类别:
The role of microRNAs in chondrogenesis and arthritis
microRNA 在软骨形成和关节炎中的作用
  • 批准号:
    8265710
  • 财政年份:
    2004
  • 资助金额:
    $ 39.05万
  • 项目类别:
Transcriptional Regulation of Chondrogenesis
软骨形成的转录调控
  • 批准号:
    7393117
  • 财政年份:
    2004
  • 资助金额:
    $ 39.05万
  • 项目类别:
The role of microRNAs in chondrogenesis and arthritis
microRNA 在软骨形成和关节炎中的作用
  • 批准号:
    8471651
  • 财政年份:
    2004
  • 资助金额:
    $ 39.05万
  • 项目类别:
The role of microRNAs in cartilage homeostasis and osteoarthritis arthritis treatment
microRNA在软骨稳态和骨关节炎治疗中的作用
  • 批准号:
    10115614
  • 财政年份:
    2004
  • 资助金额:
    $ 39.05万
  • 项目类别:
The role of microRNAs in cartilage homeostasis and osteoarthritis arthritis treatment
microRNA在软骨稳态和骨关节炎治疗中的作用
  • 批准号:
    9906170
  • 财政年份:
    2004
  • 资助金额:
    $ 39.05万
  • 项目类别:

相似海外基金

Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
  • 批准号:
    10748859
  • 财政年份:
    2024
  • 资助金额:
    $ 39.05万
  • 项目类别:
Role of YB1 in health disparities in triple negative breast cancer
YB1 在三阴性乳腺癌健康差异中的作用
  • 批准号:
    10655943
  • 财政年份:
    2023
  • 资助金额:
    $ 39.05万
  • 项目类别:
Increasing initiation of evidence-based weight loss treatment
越来越多地开始开展循证减肥治疗
  • 批准号:
    10735201
  • 财政年份:
    2023
  • 资助金额:
    $ 39.05万
  • 项目类别:
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
  • 批准号:
    10610975
  • 财政年份:
    2023
  • 资助金额:
    $ 39.05万
  • 项目类别:
Exploring PTSD Symptoms, Barriers and Facilitators to Mindfulness-based Stress Reduction for Justice-Involved Black/African American Female Adolescents and Parents/Caregivers
探索创伤后应激障碍 (PTSD) 症状、障碍和促进因素,为涉及正义的黑人/非裔美国女性青少年和父母/照顾者进行基于正念的减压
  • 批准号:
    10593806
  • 财政年份:
    2023
  • 资助金额:
    $ 39.05万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了