Peripartum Depression Prevention: Algorithmic Identification and Digital Solutions
围产期抑郁症预防:算法识别和数字解决方案
基本信息
- 批准号:10523267
- 负责人:
- 金额:$ 15.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdherenceAdvisory CommitteesAffectAlgorithmsArtificial IntelligenceBehavior ControlBlack PopulationsBlack raceCaringChildChildbirthClinicalCognitive TherapyDataData SetDetectionDevelopmentDevelopmental Delay DisordersDiagnosisDiscriminationEarly InterventionEffectivenessElectronic Health RecordEnrollmentEnsureEventEvidence based treatmentFailure to ThriveFeedbackFirst Pregnancy TrimesterFrequenciesFundingFutureHealth ServicesIncidenceIndividualInfantInterventionLightMachine LearningMeasuresMedical centerMental DepressionMental Health ServicesMethodsModelingMothersNational Institute of Mental HealthNurse PractitionersOutcome MeasureOutputParticipantPathway interactionsPatientsPerinatalPersonsPhysiciansPopulationPopulation HeterogeneityPostpartum PeriodPregnancyPremature BirthPreventionPrevention approachPrevention strategyPreventive serviceProcessProviderRaceRandomizedRandomized Controlled TrialsRecommendationRecording of previous eventsRiskRisk FactorsServicesSocietiesTimeTouch sensationUnited StatesUniversitiesWomanWorkacceptability and feasibilityantepartum depressionarmartificial intelligence algorithmbasebehavioral healthclinical practicecommunity engagementcostdepression preventiondigitaldigital mental healthevidence baseexperiencefeasibility testinggraph learninghuman centered designimplementation frameworkimprovedindividual patientinnovationinsightlarge datasetslearning algorithmmaternal depressionpatient populationperipartum depressionprediction algorithmpregnantprimary outcomeprospectiveracial differencerecruitrisk predictionroutine carestandard of caretooltreatment as usualuptakeusability
项目摘要
Project Summary/Abstract
Background: Depression during pregnancy and the postpartum period affects up to 15% of US
mothers, imposing costs on mother, child, and society. Significantly more Black individuals meet
the criteria for depression than white individuals in the US, yet they are less likely to receive
mental health care, highlighting disparities in diagnosis and treatment. A United States
Preventive Services Task Force recommendation suggests that pregnant people at risk for
depression be proactively engaged in behavioral health services. For any depression prevention
approach to be scalable and sustainable, those at risk of depression must be accurately identified
prior to depression onset and subsequently connected to an evidence-based treatment that is
feasible, acceptable, and usable.
Methods Aim 1 will apply the PC Kernel Conditional Independence algorithm to two large
prospective observational datasets. The output will be models of the potential causal pathways of
perinatal depression onset that can be used to predict individual patient depression risk based on
factors that can 1) be queried from the existing electronic health record (EHR), and 2) can be
combined with EHR data to more precisely predict subsequent maternal depression above and
beyond standard of care screeners. This will create a minimal set of data needed for risk prediction
and intervention. Aim 2 will convene an expert panel of 5 OB/GYN providers and two community
engagement studios, one with Black pregnant individuals and one with white pregnant
individuals, to obtain feedback on the implementation needs and acceptability of the risk
prediction algorithms. Aim 3 will randomize 60 participants (50% Black individuals) who are at-
risk for future depression in the first trimester of pregnancy to a digital CBT (treatment) or usual
care (control), using a non-traditional, highly scalable approach to trial enrollment.
Potential Impact: This work will identify the data and processes necessary for a subsequent
randomized controlled trial of an acceptable, scalable, and largely digital strategy for depression
detection and prevention among pregnant people. It is highly innovative as it will be the first study
of its kind to identify risk prior to depression onset using a scalable approach to engaging a
diverse population of pregnant patients paired with digital mental health care provision,
incorporating the perspectives and experiences of the patient population for whom the model is
serving into the development process.
项目摘要/摘要
背景:妊娠期和产后期抑郁影响高达15%的美国人
母亲,给母亲、孩子和社会带来了代价。明显更多的黑人遇到
在美国,抑郁症的标准比白人更低,但他们患抑郁症的可能性更小
精神卫生保健,强调在诊断和治疗方面的差异。一个美国
预防服务工作组的建议建议,孕妇有患上
抑郁症患者应积极从事行为健康服务。对于任何抑郁症的预防
为了具有可伸缩性和可持续性,必须准确地识别那些有抑郁风险的人
在抑郁症发作之前,随后与循证治疗有关,这是
可行、可接受和可用的。
方法目标1将PC内核条件独立算法应用于两个较大的
预期观测数据集。输出将是潜在的因果路径的模型
围产期抑郁发作可用于预测个体患者的抑郁风险
可以从现有的电子健康档案(EHR)中查询的因素,以及2)可以
结合EHR数据,更准确地预测随后的母亲抑郁
超出标准的关怀筛查员。这将创建风险预测所需的最小数据集
和干预。AIM 2将召集由5个OB/GYN提供商和两个社区组成的专家小组
订婚工作室,一个是黑人孕妇,另一个是白人孕妇
个人,以获得关于实施需求和风险可接受性的反馈
预测算法。AIM 3将随机选择60名参与者(50%为黑人),他们的年龄-
怀孕前三个月接受数字CBT(治疗)或常规治疗的未来抑郁风险
关怀(控制),使用非传统、高度可扩展的方法进行试验登记。
潜在影响:这项工作将确定后续
一种可接受的、可扩展的、主要数字化的抑郁症治疗策略的随机对照试验
孕妇的检测和预防。这项研究具有很高的创新性,因为这将是第一项研究
使用可扩展的方法在抑郁症发作之前识别风险
多样化的怀孕患者群体与数字精神卫生保健服务相匹配,
结合模型所针对的患者群体的观点和经验
服务于开发过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tamar Krishnamurti其他文献
Tamar Krishnamurti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tamar Krishnamurti', 18)}}的其他基金
Peripartum Depression Prevention: Algorithmic Identification and Digital Solutions
围产期抑郁症预防:算法识别和数字解决方案
- 批准号:
10679011 - 财政年份:2022
- 资助金额:
$ 15.98万 - 项目类别:
Identification and Prediction of Peripartum Depression from Natural Language Collected in a Mobile Health App
根据移动健康应用程序收集的自然语言识别和预测围产期抑郁症
- 批准号:
9892136 - 财政年份:2020
- 资助金额:
$ 15.98万 - 项目类别:
相似海外基金
An innovative, AI-driven prehabilitation platform that increases adherence, enhances post-treatment outcomes by at least 50%, and provides cost savings of 95%.
%20创新、%20AI驱动%20康复%20平台%20%20增加%20依从性、%20增强%20治疗后%20结果%20by%20at%20至少%2050%、%20和%20提供%20成本%20节省%20of%2095%
- 批准号:
10057526 - 财政年份:2023
- 资助金额:
$ 15.98万 - 项目类别:
Grant for R&D
Improving Repositioning Adherence in Home Care: Supporting Pressure Injury Care and Prevention
提高家庭护理中的重新定位依从性:支持压力损伤护理和预防
- 批准号:
490105 - 财政年份:2023
- 资助金额:
$ 15.98万 - 项目类别:
Operating Grants
I-Corps: Medication Adherence System
I-Corps:药物依从性系统
- 批准号:
2325465 - 财政年份:2023
- 资助金额:
$ 15.98万 - 项目类别:
Standard Grant
Unintrusive Pediatric Logging Orthotic Adherence Device: UPLOAD
非侵入式儿科记录矫形器粘附装置:上传
- 批准号:
10821172 - 财政年份:2023
- 资助金额:
$ 15.98万 - 项目类别:
Nuestro Sueno: Cultural Adaptation of a Couples Intervention to Improve PAP Adherence and Sleep Health Among Latino Couples with Implications for Alzheimer’s Disease Risk
Nuestro Sueno:夫妻干预措施的文化适应,以改善拉丁裔夫妇的 PAP 依从性和睡眠健康,对阿尔茨海默病风险产生影响
- 批准号:
10766947 - 财政年份:2023
- 资助金额:
$ 15.98万 - 项目类别:
CO-LEADER: Intervention to Improve Patient-Provider Communication and Medication Adherence among Patients with Systemic Lupus Erythematosus
共同领导者:改善系统性红斑狼疮患者的医患沟通和药物依从性的干预措施
- 批准号:
10772887 - 财政年份:2023
- 资助金额:
$ 15.98万 - 项目类别:
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
- 批准号:
10594350 - 财政年份:2023
- 资助金额:
$ 15.98万 - 项目类别:
Antiretroviral therapy adherence and exploratory proteomics in virally suppressed people with HIV and stroke
病毒抑制的艾滋病毒和中风患者的抗逆转录病毒治疗依从性和探索性蛋白质组学
- 批准号:
10748465 - 财政年份:2023
- 资助金额:
$ 15.98万 - 项目类别:
Improving medication adherence and disease control for patients with multimorbidity: the role of price transparency tools
提高多病患者的药物依从性和疾病控制:价格透明度工具的作用
- 批准号:
10591441 - 财政年份:2023
- 资助金额:
$ 15.98万 - 项目类别:
Development and implementation of peer-facilitated decision-making and referral support to increase uptake and adherence to HIV pre-exposure prophylaxis in African Caribbean and Black communities in Ontario
制定和实施同行协助决策和转介支持,以提高非洲加勒比地区和安大略省黑人社区对艾滋病毒暴露前预防的接受和依从性
- 批准号:
491109 - 财政年份:2023
- 资助金额:
$ 15.98万 - 项目类别:
Fellowship Programs