Mechanistic Dissection and Antibiotic Discovery Targeting Clostridioides difficile RNA Polymerase
针对艰难梭菌 RNA 聚合酶的机制解析和抗生素发现
基本信息
- 批准号:10523156
- 负责人:
- 金额:$ 10.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-12 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:Advisory CommitteesAlkaline PhosphataseAntibiotic ResistanceAntibiotic TherapyAntibioticsAreaAwardBacterial RNABehaviorBindingBiochemicalBiochemistryBioinformaticsBiological AssayBiophysicsBroccoli - dietaryCenters for Disease Control and Prevention (U.S.)ChIP-seqClostridium difficileCollaborationsCommunicationComplexCryoelectron MicroscopyDNADNA-Directed RNA PolymeraseData SetDevelopmentDissectionDockingDrug TargetingEducational process of instructingElongation FactorEnvironmental Risk FactorEnzymesEscherichia coliExhibitsFlagellaFutureGene ExpressionGene Expression ProfileGene Expression ProfilingGenerationsGeneticGenetic TranscriptionGenomicsGoalsGrowthHealthcare SystemsHumanIn VitroIncidenceInfectionInvestigationKineticsKnowledgeLeadershipLifeMentorsMolecularMolecular ConformationMulti-Drug ResistanceMusN-terminalOperonOrganismPhasePhysiologyPlayPrionsPromoter RegionsProtein SubunitsProteinsPublic HealthRNARNA Polymerase IRNA Polymerase InhibitorRecombinantsRecurrenceRegulationReporterResearchResearch TrainingResistanceResourcesRibosomal RNARoleSpecificityStructureSystemTechniquesTestingTexasTranscription InitiationTranscription ProcessTranscriptional RegulationUnited StatesUniversitiesVirulenceWisconsinWorkantimicrobialaptamerbacterial resistancebasecareercombatdesignexperimental studyfollow-upgenetic informationgenome-widehigh throughput screeninghost microbiomeimprovedin vivoinfectious disease treatmentinhibitorinsightmutantnew therapeutic targetnon-prionnovelparalogous genepathogenpathogenic bacteriaprion-likepromoterresponserhoskillstermination factortranscription factortranscription terminationvirtual screening
项目摘要
PROJECT SUMMARY
With the alarming increase in the incidence of infections caused by antibiotic-resistance bacteria, there is an
urgent need to identify new strategies to combat this emerging threat. The development, growth, and survival
of all living organisms rely on coordinated gene expression. Central to gene expression is RNA polymerase
(RNAP), a multi-subunit protein that transcribes genetic information from DNA to RNA in the complex and
highly regulated process of transcription. Transcription has three major stages for creating a nascent RNA:
initiation, elongation, and termination, each of which is controlled by protein transcription factors. RNAP is a
proven drug target, but RNAP’s mechanistic features and how it is regulated by transcription factors remain
poorly understood in pathogenic bacteria. My long-term goal is to understand the mechanisms of action of
RNAP and key transcription factors involved in regulating RNAP initiation (CarD), elongation (NusG and NusA)
and termination (Rho) in order to improve future antimicrobial development. In this proposed research, I will
investigate the biochemical, structural, and genetic basis of the transcriptional machinery of Clostridioides
difficile (C. diff.), a life-threatening gut pathogen that is resistant to multiple antibiotics. In Aim 1(K99 phase), I
will investigate the functional relationship between two paralogs of the transcription regulator CarD and RNAP
through in vitro and in vivo studies to test the hypothesis that the two CarD paralogs compete to bind and
regulate RNAP, and the interplay of these factors is critical for coordinated control of transcription initiation in
C. diff. In Aim 2 (K99/R00 phase), I will use genomic-scale mapping techniques and genetic assays to
interrogate how Rho rewires gene expression by terminating transcription by RNAP. I will also design
biochemistry assays to elucidate the mechanisms by which NusA and NusG, two universal elongation factors,
modulate Rho-RNAP behavior. In Aim 3 (R00 phase), I will build an in vitro platform using the Broccoli
fluorescent RNA aptamer to enable high-throughput screening of inhibitors of C. diff. RNAP. Virtual screening
will be conducted to identify novel inhibitors based on our newly obtained cryo-EM structure. The proposed
research in the K99 phase will mainly be conducted in the lab of Prof. Robert Landick at the University of
Wisconsin-Madison. The key area that I will acquire additional research training is genome-scale mapping
techniques and corresponding bioinformatics skills to analyze high-throughput datasets. I will also be guided by
an advisory committee including collaborators Prof. Federico Rey (UW-Madison, an expert in microbiome-host
interactions) and Prof. Elizabeth Campbell (The Rockefeller Univ., an expert in cryo-EM of RNAP and
associated proteins), and consultant Prof. Joseph Sorg (Texas A&M Univ., an expert in C. diff genetics and
physiology). I will also benefit from the facilities and abundant resources at UW-Madison. During the mentored
phase of this award, I also plan to hone my skills in teaching, leadership and scientific communication, which
will facilitate my transition to an independent research career.
项目摘要
随着抗生素抗性细菌引起的感染发病率的惊人增加,有一个
迫切需要确定应对这一新兴威胁的新策略。发展,成长和生存
在所有生物体中,依赖于协调的基因表达。基因表达的中心是RNA聚合酶
(rnap),一种多亚基蛋白,可将遗传信息从复合物中的DNA转录到RNA
高度调节的转录过程。转录有三个主要阶段来创建新生的RNA:
起始,伸长和终止,每种都由蛋白质转录因子控制。 rnap是一个
经过验证的药物靶标,但是RNAP的机械特征及其如何受到转录因子的调节
在致病细菌中了解不足。我的长期目标是了解行动机制
调节RNAP倡议(卡),伸长率(NUSG和NUSA)涉及的RNAP和关键转录因子(NUSG和NUSA)
和终止(RHO),以改善未来的抗菌发育。在这项拟议的研究中,我将
研究梭状芽胞杆菌苷的转录机械的生化,结构和遗传基础
艰难梭菌(C. diff。),一种威胁生命的肠道病原体,对多种抗生素具有抗性。在AIM 1(K99阶段)中,我
将研究转录调节器卡和RNAP的两个旁系同源物之间的功能关系
通过体外和体内研究,测试两个卡旁系同子竞争与结合和结合的假设
调节RNAP,这些因素的相互作用对于对转录的协调控制至关重要
C.差异在AIM 2(K99/R00阶段)中,我将使用基因组规模的映射技术和遗传测定
询问Rho如何通过rNAP终止转录来重新布置基因表达。我也会设计
生物化学探索以阐明NUSA和NUSG的机制,这是两个普遍伸长因子,
调节Rho-RNAP行为。在AIM 3(R00阶段)中,我将使用西兰花构建一个体外平台
荧光RNA APATMER可实现C. diff的抑制剂的高通量筛选。 rnap。虚拟筛选
将根据我们新获得的冷冻EM结构来识别新型抑制剂。提议
K99阶段的研究将主要在大学的罗伯特·兰迪克教授的实验室进行。
威斯康星州麦迪逊。我将获得其他研究培训的关键领域是基因组规模映射
技术和相应的生物信息学技能来分析高通量数据集。我也会被指导
一个咨询委员会,包括合作者Federico Rey教授(UW-Madison,Microbiome-Host专家
互动)和伊丽莎白·坎贝尔(Elizabeth Campbell)教授(洛克菲勒大学(Rockefeller Univ。)
相关蛋白质)和顾问约瑟夫·索格(Dexas A&M Univ。)
生理)。我还将从UW-Madison的设施和丰富资源中受益。在这件事期间
这个奖项的阶段,我还计划磨练我在教学,领导和科学交流方面的技能,这
将有助于我过渡到独立研究职业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinyun Cao其他文献
Xinyun Cao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xinyun Cao', 18)}}的其他基金
Mechanistic Dissection and Antibiotic Discovery Targeting Clostridioides difficile RNA Polymerase
针对艰难梭菌 RNA 聚合酶的机制解析和抗生素发现
- 批准号:
10682542 - 财政年份:2022
- 资助金额:
$ 10.45万 - 项目类别:
相似国自然基金
基于纳米抗体特异识别活性碱性磷酸酶的免疫分析用于快速验证牛奶巴氏杀菌的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于纳米抗体特异识别活性碱性磷酸酶的免疫分析用于快速验证牛奶巴氏杀菌的研究
- 批准号:82273632
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
碱性磷酸酶分子机器装配失调导致低碱性磷酸酯酶血症的机制研究与分子预警
- 批准号:82272519
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
碱性磷酸酶分子机器装配失调导致低碱性磷酸酯酶血症的机制研究与分子预警
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
碱性磷酸酶调控无定形聚磷酸钙诱导I型胶原纤维内矿化及其机制研究
- 批准号:82201120
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Bioengineering Phage-based Biosensors with Genetic Specificity and High Sensitivity
具有遗传特异性和高灵敏度的生物工程噬菌体生物传感器
- 批准号:
10727412 - 财政年份:2023
- 资助金额:
$ 10.45万 - 项目类别:
Mechanistic Dissection and Antibiotic Discovery Targeting Clostridioides difficile RNA Polymerase
针对艰难梭菌 RNA 聚合酶的机制解析和抗生素发现
- 批准号:
10682542 - 财政年份:2022
- 资助金额:
$ 10.45万 - 项目类别:
Interaction of LOS and Innate Immunity in Neisseria Infection
奈瑟菌感染中 LOS 与先天免疫的相互作用
- 批准号:
9140859 - 财政年份:2011
- 资助金额:
$ 10.45万 - 项目类别:
Dental applications for a novel osteoclast inhibitor
新型破骨细胞抑制剂的牙科应用
- 批准号:
8118169 - 财政年份:2010
- 资助金额:
$ 10.45万 - 项目类别: