Project 1: Small Molecule Entry Inhibitors of Pandemic Viruses
项目1:大流行病毒的小分子进入抑制剂
基本信息
- 批准号:10522810
- 负责人:
- 金额:$ 817.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-16 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVACE2Animal ModelAntiviral AgentsArenavirusBindingBinding ProteinsBiological AssayBiological AvailabilityBolivian Hemorrhagic Fever VirusCOVID-19 treatmentCell Culture TechniquesCell membraneCellsChimeric ProteinsCollaborationsComputing MethodologiesCoronavirusData SetEbolaEbola virusEndocytosisEnzyme-Linked Immunosorbent AssayEscape MutantEvaluationExperimental DesignsFilovirusFlavivirusFluorescenceGenomeGlycoproteinsHamstersIn VitroInfectionKnockout MiceLabelLibrariesLipidsLungLung infectionsMediatingMembraneMembrane FusionMembrane GlycoproteinsMethodsMidwestern United StatesModelingMolecular ConformationMusOralOutcomePeptidesProdrugsProteinsQuantitative Structure-Activity RelationshipReceptor CellReceptor InhibitionSARS-CoV-2 infectionSARS-CoV-2 spike proteinSeriesSevere Acute Respiratory SyndromeStructureTestingTimeToxic effectTransmembrane DomainUpdateVariantViralViral GenomeViral ProteinsVirusVirus InhibitorsVirus ReplicationWorkZIKV infectionZika Virusanalogbasedesigndimerenv Gene Productsin vivoin vivo Modelindexinginhibitorlead candidatelead seriesmouse modelnovelpandemic diseasereceptorreceptor bindingrespiratorysmall moleculesmall molecule inhibitorstemthree dimensional structurevirtualvirus envelope
项目摘要
Project 1 – Small Molecule Entry Inhibitors of Pandemic Viruses
ABSTRACT
Coronaviruses (CoVs), arenaviruses (Arv), flaviviruses (FLAVs) and filoviruses (FiVs) are enveloped
viruses. During virus entry, receptor binding and refolding of the fusion protein, followed by lipid mixing, are three
essential steps to release the viral genome. Inhibitors of any one of the three steps may be developed as effective
antiviral drugs. Aim 1. Screen. (A) DEC-Tec screen using the purified ectodomain of the SARS2 S protein,
glycoprotein of Machupo virus (MACV) and envelope (E) protein of Zika virus (ZIKV). (B) HTS will be carried out
using fluorescence assays by targeting the six-helix bundle (6HB) of SARS2 and by competition with compound
ALD-1.2 that binds ZIKV E protein. (C) Virtual screens by AutoDock or other computation methods will also be
conducted since 3D structures of all target proteins are available. Aim 2. Optimization. Mechanism of action by
hit compounds. (SARS2) Hit compounds from aim 1A will be validated by time of addition inhibition assays based
on cell culture infection of SARS2 pseudotype. Validated entry inhibitors will be screened for inhibition of receptor
binding by the S protein, and formation of 6HB. The receptor binding assay is by ELISA using an ACE2-Fc
protein. The 6HB assay is set up by binding a fluorescently labeled HR2 peptide to 5HB. Entry inhibitors of other
viruses will follow the same study approach. Inhibitors of lipid mixing. In preliminary efforts, we have identified
three inhibitors that have EC50 values as low as 190 nM for SARS2 infection of cell culture. Mechanistic studies
confirm that these inhibitors interact with the transmembrane domain of the fusion protein and block membrane
fusion during virus entry. The experimental design for optimization is presented. Ebola virus entry inhibitors.
These inhibitors are at an advanced stage and serve as a proof-of-concept example for our strategy. Med Chem
Optimization. Structure and QSAR-based optimization of the inhibitor compounds will be carried out in
collaboration with Cores C and D. Candidates that meet the criteria for further evaluation will be advanced to
DMPK/toxicity studies (Core C). Escape mutants. The state-of-the-art approach is developed to evaluate
mutants that escape the antiviral activities of the inhibitors, to aid inhibitor optimization. Aim 3. In vivo efficacy.
For SARS2, lead candidates, especially prodrugs, will be evaluated for broad antiviral activities against multiple
SARS2 and SARS isolates. Potent candidates will be evaluated in hamster and mouse models. For Arv, Stat1-/-
and Ifnar1/Ifnar2 double knockout mice will be used as infection models. For Ebola virus, we have identified a
series of small molecule inhibitors targeting the Ebola GP with a novel mechanism. We will evaluate and adapt
these for the broad-spectrum activity against other significant filoviruses and evaluate their in vivo efficacy in the
animal model operating at ABSL4. Top ZIKV inhibitors will be tested in animal models against multiple ZIKV
infections. All technical work is carried out in Core E.
项目1 - 大流行病毒的小分子进入抑制剂
抽象的
冠状病毒(COVS),体育症病毒(ARV),黄病毒(Flavs)和丝状病毒(FIV)被包裹
病毒。在进入病毒期间,融合蛋白的受体结合和重折叠,然后是脂质混合,为三个
释放病毒基因组的重要步骤。三个步骤中任何一个的抑制剂均可开发为有效
抗病毒药物。目标1。屏幕。 (a)使用SARS2 S蛋白的纯化的外域域的DEC-TEC筛选,
Machupo病毒(MACV)和Zika病毒(ZIKV)的包膜(E)蛋白的糖蛋白。 (b)将进行HTS
通过靶向SARS2的六螺旋束(6hb)和与化合物竞争,使用荧光测定
结合ZIKV E蛋白的Ald-1.2。 (c)Autodock或其他计算方法的虚拟屏幕也将是
由于所有靶蛋白的3D结构都可以使用。目标2。优化。作用机理
点击化合物。 (SARS2)AIM 1A的命中化合物将通过基于添加抑制测定的时间来验证
关于SARS2假型的细胞培养感染。经过验证的进入抑制剂将被筛选以抑制接收器
由S蛋白结合,形成6Hb。受体结合测定是通过ELISA使用ACE2-FC的
蛋白质。通过将荧光标记的HR2胡椒与5HB结合来建立6HB测定。其他其他抑制剂
病毒将遵循相同的研究方法。脂质混合的抑制剂。在初步努力中,我们已经确定
三种抑制剂的EC50值低至190 nm,用于细胞培养的SARS2感染。机械研究
确认这些抑制剂与融合蛋白的跨膜结构域相互作用
病毒进入期间的融合。提出了优化的实验设计。埃博拉病毒进入抑制剂。
这些抑制剂处于高级阶段,并作为我们策略的概念验证示例。 Med Chem
优化。基于结构和基于QSAR的抑制剂化合物的优化将在
与核心C和D的合作。
DMPK/毒性研究(核心C)。逃避突变体。开发了最先进的方法来评估
逃避抑制剂抗病毒活性的突变体有助于抑制剂优化。目标3。体内效率。
对于SARS2,将评估主要候选人,尤其是前药,以进行广泛的抗病毒活动。
SARS2和SARS分离株。有效的候选者将在仓鼠和小鼠模型中进行评估。对于ARV,STAT1 - / -
IFNAR1/IFNAR2双基因敲除小鼠将用作感染模型。对于埃博拉病毒,我们已经确定了
针对埃博拉病毒GP的一系列小分子抑制剂,具有新的机制。我们将评估和适应
这些用于针对其他重要的铁病毒的广泛活性,并评估其体内效率
在ABSL4运行的动物模型。顶部ZIKV抑制剂将在动物模型中测试针对多个ZIKV
感染。所有技术工作均在Core E中进行。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MING LUO其他文献
MING LUO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MING LUO', 18)}}的其他基金
STRUCTURE DETERMINATION OF VIRAL NUCLEOPROTEIN COMPLEXES
病毒核蛋白复合物的结构测定
- 批准号:
8362196 - 财政年份:2011
- 资助金额:
$ 817.71万 - 项目类别:
STRUCTURE DETERMINATION OF VIRAL NUCLEOPROTEIN COMPLEXES
病毒核蛋白复合物的结构测定
- 批准号:
8170157 - 财政年份:2010
- 资助金额:
$ 817.71万 - 项目类别:
Assembly of the Negative Stranded RNA Virus Core
负链RNA病毒核心的组装
- 批准号:
7880321 - 财政年份:2009
- 资助金额:
$ 817.71万 - 项目类别:
相似国自然基金
CAFs来源的外泌体负性调控ACE2促进肾透明细胞癌癌栓新辅助靶向耐药的机制研究
- 批准号:82373169
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
人类ACE2变构抑制剂的成药性及其抗广谱冠状病毒感染的机制研究
- 批准号:82330111
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
新型蝙蝠MERS簇冠状病毒HKU5的ACE2受体识别及细胞入侵机制研究
- 批准号:32300137
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于AT2/ACE2/Ang(1-7)/MAS轴调控心脏-血管-血液系统性重构演变规律研究心衰气虚血瘀证及其益气通脉活血化瘀治法生物学基础
- 批准号:82305216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于外泌体miRNAs介导细胞通讯的大豆ACE2激活肽调控血管稳态机制研究
- 批准号:32302080
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Programming designer DNA nanostructures for blocking enveloped viral infection
编程设计 DNA 纳米结构以阻止包膜病毒感染
- 批准号:
10598739 - 财政年份:2023
- 资助金额:
$ 817.71万 - 项目类别:
Mechanistic modeling of the innate immune responses of the human lung to understand the inter-individual heterogeneity of COVID-19 pneumonia
人肺先天免疫反应的机制模型,以了解 COVID-19 肺炎的个体间异质性
- 批准号:
10728396 - 财政年份:2023
- 资助金额:
$ 817.71万 - 项目类别:
Transmission of CoV-2 and the Impact of Spike Protein Evolution
CoV-2 的传播和刺突蛋白进化的影响
- 批准号:
10587954 - 财政年份:2023
- 资助金额:
$ 817.71万 - 项目类别:
COVID-19 airway inflammation is due to Spike inhibition of CFTR signaling
COVID-19 气道炎症是由于 CFTR 信号的 Spike 抑制所致
- 批准号:
10566710 - 财政年份:2023
- 资助金额:
$ 817.71万 - 项目类别: