Functional dissection of cerebellar output circuits that orchestrate limb motor control
协调肢体运动控制的小脑输出电路的功能剖析
基本信息
- 批准号:10524627
- 负责人:
- 金额:$ 226.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-19 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAnatomyAnteriorAtaxiaAttenuatedBehaviorBiological AssayCell NucleusCerebellar DiseasesCerebellar NucleiCerebellumCerebral cortexCervical spinal cord structureDataDecelerationDiagnosisDiseaseDissectionElectromyographyElectrophysiology (science)EnsureExtensorFelis catusFlexorForelimbFunctional disorderGeneticGoalsHandHeadHumanImpairmentIn Situ HybridizationInjuryInterneuronsLeadLifeLimb structureLinear ModelsLogicMediatingMolecularMonkeysMotorMotor NeuronsMotor outputMovementMovement DisordersMusMuscleNervous System controlNeuronsNeurophysiology - biologic functionOpticsOutputPathway interactionsPhasePlayPopulationPositioning AttributeProcessRabiesResolutionRoleRouteSensorySignal TransductionSpinalSpinal CordSystemTestingThalamic structureViralWaterWorkarm movementbasecombinatorialdefined contributionexperimental studyflexibilityimprovedin vivoinsightkinematicslimb movementmotor behaviormotor controlmotor deficitmotor impairmentneural circuitoptogeneticspreventrecruitrelating to nervous systemrepairedsensory feedbacktooltranscriptome sequencing
项目摘要
Project Summary
The cerebellum is essential for coordinating motor behavior through rapid adjustments of ongoing movements.
To refine movement, the cerebellum processes motor and sensory information, and transmits output that
ultimately modulates motor neuron activity to ensure successful execution. The path through which the
cerebellum can influence limb movement is through output circuits in the cerebellar nuclei (CN). Yet little is known
about how CN circuits are organized and whether discrete pathways are dedicated to specific motor functions
for limb control. The recent identification of a molecularly distinct subset of CN neurons that project to the cerebral
cortex via the thalamus and can affect forelimb movement begins to reveal a broader neural subtype logic to
cerebellar output. Further exploration indicates that there are also CN neurons that directly innervate the cervical
spinal cord. These descending projections could provide a more direct route for influencing motor output, but the
specific roles they have in movement execution and refinement remain poorly understood. Based on preliminary
evidence, the major hypothesis of this proposal is that anatomically and molecularly distinct subsets of CN
neurons have discrete contributions to forelimb motor control. Specifically, cerebellar-spinal circuits play a critical
role in rapid online correction, and their functional output is needed to prevent forelimb ataxia. Three Aims will
explore how spinal-projecting CN circuits differ from the more heavily studied CN circuits that project to the
thalamus. Aim 1 defines specific subtypes of neurons within the cerebellar nuclei by delineating their input and
output connectivity and molecular identities. The distinctions in efferent and afferent connectivity of spinal- and
thalamus-projecting CN neurons will be defined using combinatorial genetic and viral circuit tracing tools in mice.
In addition, molecular distinctions between these two classes of cerebellar output neurons will be identified using
single nuclei RNA-sequencing and multiplexed in situ hybridization. Aim 2 sets out to establish the functional
connectivity between these distinct CN subpopulations and forelimb muscles and examines how spinal- and
thalamus-projecting cerebellar output pathways influence goal-directed forelimb movements. Selective
optogenetic perturbation, electromyographic (EMG) recording, and high-resolution kinematic analysis will be
used to determine how spinal- and thalamus-projecting CN neurons differentially affect muscle activity and online
refinement of behavior. Aim 3 explores how the activity of discrete CN output pathways correlates with forelimb
online correction and endpoint precision. This goal will be accomplished by recording from spinal- and thalamus-
projecting CN populations and forelimb muscles during dexterous reaching behaviors, and by applying
generalized linear models to determine if neural activity predicts EMG and kinematic movement features. By
defining the organization of two major cerebellar output pathways and identifying the ways in which they influence
dexterous movements, this work will provide insight into how diverse circuits differentially participate in motor
control, and clarify how injury and disease of cerebellar circuits can lead to motor impairments in humans.
项目摘要
通过对正在进行的动作进行快速调整,小脑对于协调运动行为是必不可少的。
为了精炼运动,小脑处理运动和感觉信息,并将
最终调节运动神经元的活动,以确保成功执行。这条路就是
小脑通过小脑核团(CN)的输出回路影响肢体运动。然而,人们对此知之甚少
关于CN电路是如何组织的,以及离散通路是否专用于特定的运动功能
用于肢体控制。最近发现的投射到大脑的一个分子上不同的CN神经元亚群
皮质通过丘脑和能影响前肢的运动开始揭示更广泛的神经亚型逻辑
小脑输出量。进一步的研究表明,也有直接支配颈部的CN神经元。
脊髓。这些下降的预测可以提供一条更直接的途径来影响电机产量,但
他们在动作、执行和提炼中扮演的具体角色仍然知之甚少。基于初步的
证据,这一建议的主要假设是在解剖学和分子上不同的CN亚群
神经元对前肢运动控制有离散的贡献。具体地说,小脑-脊髓回路起着关键的作用
在快速在线矫正中发挥作用,其功能输出是预防前肢共济失调所必需的。三个目标将
探索脊髓投射的CN回路与投射到
丘脑。目标1通过描绘小脑核内神经元的输入和分布来定义它们的特定亚型
输出连接性和分子同一性。脊髓的传出和传入连接的区别-和
投射丘脑的CN神经元将使用组合遗传和病毒回路追踪工具在小鼠身上进行定义。
此外,这两类小脑输出神经元之间的分子差异将通过
单核RNA测序和多重原位杂交。目标2着手建立功能
这些不同的CN亚群和前肢肌肉之间的连接性,并检查了脊髓和
丘脑-投射小脑的输出通路影响目标导向的前肢运动。有选择性的
光遗传扰动、肌电(EMG)记录和高分辨率运动学分析
用于确定脊髓和丘脑投射的CN神经元如何不同地影响肌肉活动和在线
行为的精致。目标3探索离散的CN输出通路的活动如何与前肢相关
在线修正和终点精度。这一目标将通过从脊髓和丘脑进行记录来实现
在灵巧的伸展行为中投射CN群体和前肢肌肉,并通过应用
通用线性模型,以确定神经活动是否预测肌电和运动学运动特征。通过
定义两条主要小脑输出通路的组织,并确定它们影响的方式
灵巧的运动,这项工作将提供洞察不同的电路如何不同地参与运动
控制,并阐明小脑回路的损伤和疾病如何导致人类的运动障碍。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Large-scale capture of hidden fluorescent labels for training generalizable markerless motion capture models.
- DOI:10.1038/s41467-023-41565-3
- 发表时间:2023-09-26
- 期刊:
- 影响因子:16.6
- 作者:Butler, Daniel J.;Keim, Alexander P.;Ray, Shantanu;Azim, Eiman
- 通讯作者:Azim, Eiman
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
EIMAN AZIM其他文献
EIMAN AZIM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('EIMAN AZIM', 18)}}的其他基金
Defining the anatomical, molecular and functional logic of internal copy circuits involved in dexterous forelimb behaviors
定义涉及灵巧前肢行为的内部复制电路的解剖学、分子和功能逻辑
- 批准号:
10438735 - 财政年份:2019
- 资助金额:
$ 226.44万 - 项目类别:
Defining the anatomical, molecular and functional logic of internal copy circuits involved in dexterous forelimb behaviors
定义涉及灵巧前肢行为的内部复制电路的解剖学、分子和功能逻辑
- 批准号:
10201782 - 财政年份:2019
- 资助金额:
$ 226.44万 - 项目类别:
Defining the anatomical, molecular and functional logic of internal copy circuits involved in dexterous forelimb behaviors
定义涉及灵巧前肢行为的内部复制电路的解剖学、分子和功能逻辑
- 批准号:
10683719 - 财政年份:2019
- 资助金额:
$ 226.44万 - 项目类别:
Neural control of skilled movements: an ethological dissection of genetically tractable mammalian motor circuits
熟练运动的神经控制:遗传易处理的哺乳动物运动回路的行为学解剖
- 批准号:
9351131 - 财政年份:2017
- 资助金额:
$ 226.44万 - 项目类别:
Control of Skilled Forelimb Movements by Cerebellar Feedback Circuits
小脑反馈电路对熟练前肢运动的控制
- 批准号:
9352369 - 财政年份:2016
- 资助金额:
$ 226.44万 - 项目类别:
Molecular Regulation of Corticospinal Motor Neuron Development
皮质脊髓运动神经元发育的分子调控
- 批准号:
7640750 - 财政年份:2007
- 资助金额:
$ 226.44万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 226.44万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 226.44万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 226.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 226.44万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 226.44万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 226.44万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 226.44万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 226.44万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 226.44万 - 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 226.44万 - 项目类别:
Research Grant