Personalized Postpartum Hemorrhage Prediction Using Machine Learning And Polygenic Risk Scores

使用机器学习和多基因风险评分进行个性化产后出血预测

基本信息

  • 批准号:
    10524826
  • 负责人:
  • 金额:
    $ 16.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT Postpartum hemorrhage, defined as estimated blood loss of at least 1000 mL within 24 hours of delivery, is the leading cause for severe maternal morbidity and mortality. Annually, postpartum hemorrhage complicates 2-3% of all pregnancies and accounts for 140,000 maternal deaths globally. In the United States, there are also significant racial disparities: Black women have a five-fold higher risk of hemorrhage-related death compared to non-Black women. While clinical postpartum hemorrhage risk prediction tools have been developed, they fail to identify up to 40% of cases; as a result, no evidence-based prediction tool is currently widely adopted in clinical practice. Thus, an efficient, precise, and personalized postpartum hemorrhage risk prediction tool is urgently needed. Recently, machine learning approaches have been increasingly used to develop accurate predictive models with superior performance compared to the traditional statistical approaches and to discover new predictors, with little prior pre-specification. Moreover, the explainable machine learning methods allow for transparent decision making and reduction of bias. In this way, machine learning models may lead to more accurate postpartum hemorrhage prediction than currently existing tools. In addition, since up to 18% of postpartum hemorrhage risk is familial and many of the clinical risk factors associated with postpartum hemorrhage have a well-established polygenic architecture, using polygenic risk tools may further enhance postpartum hemorrhage risk prediction. In line with the NIH IMPROVE initiative goals to improve maternal safety and outcomes, we propose here to develop a high-fidelity algorithm, combining both clinical and genetic factors, to more accurately predict the risk of postpartum hemorrhage in pregnant individuals. We will leverage our rich patient database and state-of-the-art computational tools to: (1) develop an improved algorithm to stratify patient postpartum hemorrhage risk with a focus on transparency and bias reduction, and (2) delineate the contribution of the genetics to postpartum hemorrhage risk. Overall, this project will advance our ability to precisely predict patients at risk for postpartum hemorrhage, with the investigation of novel predictors, interaction between clinical and genetic contributors, and novel application of both machine learning and polygenic risk scores to these outcomes. Ultimately, we aim to validate and implement these tools in clinical practice, leading to greatly enhanced ability to prevent maternal morbidity and mortality. By completion of these aims, I will develop a specific skill set essential for establishing my research trajectory and transition to independence as a physician- scientist utilizing translational computational approaches to predict and improve adverse obstetric outcomes.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vesela Kovacheva其他文献

Vesela Kovacheva的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vesela Kovacheva', 18)}}的其他基金

Personalized Postpartum Hemorrhage Prediction Using Machine Learning And Polygenic Risk Scores
使用机器学习和多基因风险评分进行个性化产后出血预测
  • 批准号:
    10670427
  • 财政年份:
    2022
  • 资助金额:
    $ 16.85万
  • 项目类别:

相似海外基金

CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221742
  • 财政年份:
    2022
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221741
  • 财政年份:
    2022
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
  • 批准号:
    2008772
  • 财政年份:
    2020
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
  • 批准号:
    541812-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 16.85万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759836
  • 财政年份:
    2018
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759796
  • 财政年份:
    2018
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759807
  • 财政年份:
    2018
  • 资助金额:
    $ 16.85万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了