Leveraging Spatial Location for Single-Cell Molecular and Morphological Characterization

利用空间定位进行单细胞分子和形态学表征

基本信息

  • 批准号:
    10534272
  • 负责人:
  • 金额:
    $ 3.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Abstract Innovative developments in single-cell sequencing technologies and techniques are providing increased resolution and novel ways to define and characterize cellular profiles. Despite this progress, linking different aspects of a cell’s identity, such as transcriptome, spatial location, morphology, and physiological response remains challenging. Spatial transcriptomic technologies, while providing transcriptomic data within a spatial framework, frequently must compromise achieving single-cell resolution in order to survey a wider panel of genes. Similarly, while techniques such as fluorescent micro-optical section tomography (fMOST) and functional ultrasound imaging (fUSI) provide detailed reconstructions of neuron morphology and physiological response, these data modalities lack the ability to simultaneously capture molecular information. As a result, while technological advances for each distinct modality continue to resolve finer and more complex cell type distinctions, cohesive cellular profiles that combine all aspects of a cell’s identity, from transcriptome to physiological response, have yet to be captured. Thus, understanding how the transcriptomic and morphological composition of a cell influences its physiological response is a key barrier for the field. This proposal aims to develop computational tools that will connect multiple facets of cellular identity. In Aim 1, we propose the addition of graph-regularization into the integrative non-negative matrix factorization algorithm (GRINMF). The use of GRINMF to include spatial information will result in more refined cell-type characterizations for cells assayed with spatial transcriptomics technologies. In Aim 2, we will validate a spatial deconvolution algorithm that leverages non-negative matrix factorization to calculate cell-type proportions within spatially registered transcriptomic data. We will anchor our derived cell-type proportion voxels in the same coordinate framework as a series of morphological and physiological datasets. By completing the proposed research, I will gain extensive experience in the development of algorithms to synthesize physiological, transcriptomic, and spatial data. This training will facilitate advancement of my communication, critical thinking, and translational technical skills, providing me with the tools necessary to pursue my ambition of becoming a research scientist at the interface of neuroscience and bioinformatics.
摘要 单细胞测序技术和技术的创新发展提供了 提高的分辨率和定义和表征细胞谱的新方法。尽管取得了这些进展, 细胞身份的不同方面,如转录组,空间位置,形态和生理 应对仍然具有挑战性。空间转录组技术,同时提供转录组数据内, 空间框架,经常必须妥协实现单细胞分辨率,以调查更广泛的面板 基因。类似地,虽然诸如荧光显微光学截面断层扫描(fMOST)和 功能超声成像(fUSI)提供了详细的神经元形态和生理重建, 然而,这些数据模式缺乏同时捕获分子信息的能力。因此,在本发明中, 虽然每种不同形式的技术进步不断解决更精细、更复杂的细胞类型 区别,结合联合收割机的细胞特性的所有方面,从转录组到 生理反应,还没有被捕获。因此,理解转录组学和 细胞的形态组成影响其生理反应是该领域的关键障碍。 该提案旨在开发将细胞身份的多个方面连接起来的计算工具。在 目的1,提出在积分非负矩阵分解中加入图正则化 算法(GRINMF)。使用GRINMF包括空间信息将导致更精细的细胞类型 用空间转录组学技术测定的细胞的表征。在目标2中,我们将验证空间 利用非负矩阵分解来计算细胞类型比例的去卷积算法 在空间配准的转录组数据中。我们将锚我们的衍生细胞类型比例体素在 与一系列形态和生理数据集相同的坐标框架。通过完成 提出的研究,我将获得丰富的经验,在算法的发展,以综合 生理学、转录组学和空间数据。这次培训将促进我的沟通, 批判性思维和翻译技能,为我提供了追求抱负所必需的工具 成为神经科学和生物信息学的研究科学家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

April Rose Kriebel其他文献

April Rose Kriebel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.95万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.95万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 3.95万
  • 项目类别:
    Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 3.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 3.95万
  • 项目类别:
    Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 3.95万
  • 项目类别:
    Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 3.95万
  • 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 3.95万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 3.95万
  • 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
  • 批准号:
    2872725
  • 财政年份:
    2023
  • 资助金额:
    $ 3.95万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了