Defining the gene regulatory roles of non-coding variants in the pathogenesis of autism
定义非编码变异在自闭症发病机制中的基因调控作用
基本信息
- 批准号:10537043
- 负责人:
- 金额:$ 5.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAddressAffectAstrocytesBinding SitesBrain regionCellsChildChromatinClustered Regularly Interspaced Short Palindromic RepeatsCodeComputational BiologyDNADataDatabasesDiagnosisDiagnosticDoctor of PhilosophyElectrophysiology (science)FamilyFellowshipFoundationsFutureGene ExpressionGenesGeneticGenetic DiseasesGenetic ServicesGenetic TranscriptionGenomeGenomic approachGenomicsGoalsHuman GeneticsHuman GenomeImpairmentIn VitroIndividualLinkLocationMediatingMedicalMedical GeneticsMembrane PotentialsMentorsMinority GroupsMolecularNeurodevelopmental DisorderNeurogliaNeurologyNeuronsNeurosciencesNucleic Acid Regulatory SequencesOutcomeParentsPathogenesisPathogenicityPatientsPhenotypePhysiciansPhysiologicalProcessPropertyRegulationRegulator GenesRegulatory ElementResearchRoleScientistSusceptibility GeneSystemTechniquesTestingTimeTissuesTrainingTranscriptional RegulationTranslatingUntranslated RNAVariantautism spectrum disorderautistic childrenbasebrain cellcareercell typecellular engineeringclinical diagnosticscohortde novo mutationdisease phenotypeexomegenetic variantgenome editinggenome sequencinghuman diseaseimprovedin vivoindividuals with autism spectrum disorderinduced pluripotent stem cellinsightlarge datasetsmemberneuroregulationoffspringpre-doctoralprobandprogramsstem cellssuccesssynaptogenesistooltranscription factortranscriptome sequencingwhole genome
项目摘要
ABSTRACT
In this Predoctoral Fellowship proposal, I will be trained for a future as a physician-scientist with my own
independent research program at the interface of genomics, computational biology, and neuroscience.
During my MD/PhD training, I will be co-mentored by two physician-scientists, Drs. John Greally (Medical
Genomics) and Pablo Castillo (Neurology), addressing a question that is timely with the imminent widespread
use of whole genome sequencing (WGS) in clinical diagnostics – how do we interpret variants in the non-
coding majority of the human genome when a patient presents with a medical problem?
I will focus on autism, as a condition that represents a substantial proportion of patients seen by medical
genetics services, for which there is extensive WGS information from thousands of families. Despite this wealth
of research sequencing, only a small minority of individuals with autism receive a positive outcome of
diagnostic exome or WGS. I propose that the currently limited diagnostic success rates are mostly due to our
inability to interpret pathogenic variants in the non-coding majority of the genome of these patients. By
improving our insights into non-coding variants, we will be able to offer diagnostic information to many more
families seeking answers than currently.
My strategy is to focus on de novo variants (DNVs) in offspring with autism born to unaffected parents. My
hypothesis is that DNVs can be pathogenic when they occur in the cis-regulatory regions of cell types
mediating autism. The project is therefore based on a computational genomics foundation, using WGS and
DNV calls from large datasets from thousands of families who have a member with autism. In my preliminary
data, I show that DNVs in individuals with autism are enriched at cis-regulatory loci in glial and neuronal cells in
particular, and at genes known to be causative for autism. In my project, I will test these associations more
rigorously, and will define a high-confidence set of DNVs for functional testing.
Two types of functional testing will be performed. One will test whether the DNVs alter molecular genomic
properties, including chromatin accessibility and gene expression. The second will test the physiological
properties of the cells. To generate the appropriate cells for testing, I plan to use induced pluripotent stem cells
(iPSCs) that are in vitro differentiated to GABAergic neurons and astrocytes. By performing CRISPR-mediated
genomic editing in the iPSCs, I can generate cells with the candidate pathogenic DNVs, and test whether they
have effects on cellular properties like dendritogenesis, synaptogenesis, and electrophysiology, increasing the
confidence that these DNVs have pathogenic effects.
I will have the privilege of getting training in sophisticated computational, stem cell and neuroscience
techniques, under the guidance of two leaders in their fields, as part of a comprehensive training plan that will
equip me to become the independent physician-scientist I aspire to be in my career.
抽象的
在这个奖学金的奖学金提案中,我将接受我自己的身体科学家的未来培训
基因组学,计算生物学和神经科学界面的独立研究计划。
在我的MD/PhD培训期间,我将由两位物理科学家Drs共同征收。约翰·格雷利(John Greally)(医疗
基因组学)和帕勃罗·卡斯蒂略(Pablo Castillo)(神经学
在临床诊断中使用整个基因组测序(WGS) - 我们如何解释非 -
当患者出现医疗问题时,编码大多数人基因组?
我将专注于自闭症,作为代表医疗看到的大部分患者的疾病
遗传学服务,有成千上万个家庭的WGS信息。尽管有这些财富
在研究测序中,只有少数自闭症的人获得了积极的结果
诊断外显子或WGS。我建议目前有限的诊断成功率主要是由于我们的
无法解释这些患者基因组的非编码大多数的致病变异。经过
改善我们对非编码变体的见解,我们将能够向更多信息提供诊断信息
寻求答案的家庭比目前。
我的策略是专注于后代的从头变体(DNV),自闭症父母生于未受影响的父母。我的
假设是DNV发生在细胞类型的顺式调节区域中时可能是致病性的
调解自闭症。因此,该项目基于计算基因组基础,使用WGS和
DNV来自数千个有自闭症成员的家庭的大型数据集的呼叫。在我的初步中
数据,我表明自闭症患者的DNV在神经胶质细胞和神经元细胞中的顺式调节中富含
特别,并且在已知的基因上是自闭症的原因。在我的项目中,我将进一步测试这些关联
严格地,将定义用于功能测试的高信心DNV。
将执行两种类型的功能测试。一个人将测试DNV是否改变分子基因组
特性,包括染色质访问性和基因表达。第二个将测试生理
细胞的特性。为了生成适当的细胞进行测试,我计划使用诱导的多能干细胞
(IPSC)在体外与GABA能神经元和星形胶质细胞区分开。通过执行CRISPR介导
IPSC中的基因组编辑,我可以使用候选病原DNV产生细胞,并测试它们是否
对细胞特性,例如树突生成,突触发生和电生理学,增加
对这些DNV具有致病作用的信心。
我将有幸接受复杂的计算,干细胞和神经科学的培训
在其领域的两名领导人的指导下,技术是一项全面的培训计划的一部分
让我成为我渴望成为职业生涯的独立身体科学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Alexander Sosa其他文献
Eric Alexander Sosa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of androgen-dependent Wolffian duct differentiation
雄激素依赖性沃尔夫管分化机制
- 批准号:
10633606 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
Elucidating the Role of YAP and TAZ in the Aging Human Ovary
阐明 YAP 和 TAZ 在人类卵巢衰老中的作用
- 批准号:
10722368 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
Multi-omic phenotyping of human transcriptional regulators
人类转录调节因子的多组学表型分析
- 批准号:
10733155 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
Defining mechanisms of metabolic-epigenetic crosstalk that drive glioma initiation
定义驱动神经胶质瘤发生的代谢-表观遗传串扰机制
- 批准号:
10581192 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别: