Evolution, transmission, and clinical impacts of SARS-CoV-2 variants among urban and rural populations

城乡人群中 SARS-CoV-2 变种的进化、传播和临床影响

基本信息

  • 批准号:
    10535916
  • 负责人:
  • 金额:
    $ 3.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Project Summary The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has resulted in over 5 million deaths worldwide. As the burdens of the pandemic in the United States (US) shift from urban to rural communities, preliminary studies suggest that rural populations suffer from higher disease severity and mortality rates than urban populations. However, even while 20% of the US population lives in a rural area and rural populations have known risk factors that differ from urban populations, the majority of COVID-19 research has primarily focused on large urban centers, and disease mitigation efforts in rural communities are largely informed by urban-centric data. Thus, it is urgently necessary to understand the evolution, spread, and clinical impacts of SARS-CoV-2 variants in rural areas and the disease interactions among urban and rural regions. However, limited clinical and genomic data, particularly from rural areas, are available, preventing us from fully understanding the disease dynamics of COVID-19. The objectives of this training grant are to determine how SARS-CoV-2 variants emerge and spread among urban and rural communities and to determine the virus, host, and population factors associated with clinical outcomes while training an MD-PhD student in advanced bioinformatics approaches, translational study design, and computational thinking to become an independent physician scientist. The Central Hypotheses are that SARS-CoV-2 variants arise in urban centers and spread into rural environments and that a synergistic set of virus, host, and population factors are associated with disease severity. To test our hypotheses, two specific aims are proposed to determine the genetic diversity and spread of SARS-CoV-2 variants among urban and rural regions (Aim 1) and to model clinical impacts of host, SARS-CoV-2 virus, and population factors (Aim 2). An existing and ongoing multi-year dataset that includes clinical information and whole genome sequencing of COVID-19-positive samples of individuals from urban and rural regions of Missouri will be used in both aims. This proposal is submitted in response to the NIAID Strategic Plan for COVID-19 Research Priority 1, “Assess functional consequences of newly emerging SARS-CoV-2 variants.” We expect the results from this study to support this priority in two ways: 1) We will determine the transmission patterns of SARS-CoV-2 variants between urban and rural communities, and 2) We will determine the clinical implications of existing and emerging SARS-CoV-2 variants as they interact with various other virus and host factors. The results from this project will improve the understanding of SARS-CoV-2 transmission dynamics and clinical impacts, particularly among rural populations, which will be important for the mitigation of COVID-19 and future pandemics.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cynthia Y Tang其他文献

Cynthia Y Tang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cynthia Y Tang', 18)}}的其他基金

Evolution, transmission, and clinical impacts of SARS-CoV-2 variants among urban and rural populations
城乡人群中 SARS-CoV-2 变种的进化、传播和临床影响
  • 批准号:
    10734763
  • 财政年份:
    2022
  • 资助金额:
    $ 3.9万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了