Tech Core 2

技术核心2

基本信息

  • 批准号:
    10532385
  • 负责人:
  • 金额:
    $ 54.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-01 至 2026-11-30
  • 项目状态:
    未结题

项目摘要

Project Summary – Tech Core 2 Spatial tumor heterogeneity plays a critical role in multiple stages of cancer progression and metastasis including the venous invasion that contributes to increased risk of cancer cell dissemination. This process involves spatially distinct interaction between cancer cells and the surrounding microenvironment at multiple sites. In Tech1, PI Wirtz will develop a new 3D multiscale tumor cell mapping method, CODA, which can create a 3D large-scale tumor cell anatomy at single cell level via tissue histology image integration and trained deep-learning semantic algorithms. What is highly desired to further add to this 3D tumor cell anatomic atlas is genome-wide molecular information such as mRNAs and a large panel of proteins for unbiased discovery of cell subtype, state, and interaction, and potentially to infer new mechanisms or targets for therapeutic intervention. TECH2 PI Fan recently developed a novel technology called DBiT-seq for high-spatial-resolution multi-omics mapping via deterministic barcoding in tissue at cellular level (~10µm), whole transcriptome scale (>22,000 genes), high coverage (>2,000 genes per 10µm pixel), and multi-omics profiling (co-mapping of ~300 protein markers), which can be readily applied to FFPE tissue sections and integrated with CODA. In Tech2, we propose the following two aims: AIM 1. A high-throughput, low cost, high quality/coverage, multi-omic mapping method (DBiT-seq) with full compatibility with human PFA and FFPE tissue samples. AIM 2. Integrating CODA and DBiT-seq for 3D multi-omic tumor imaging. Successful completion of these two aims will lead to the first genome-wide multi- omics 3D view of vascular or lymphovascular invasion of human tumors and a powerful technology platform for the consortium to investigate spatial tissue heterogeneity in other human cancers.
项目摘要-技术核心2 肿瘤空间异质性在癌症进展和转移的多个阶段中起着关键作用,包括 导致癌细胞扩散风险增加的静脉侵入。这一过程涉及空间 癌细胞与周围微环境在多个部位的不同相互作用。在Tech 1,PI 维尔茨将开发一种新的3D多尺度肿瘤细胞绘图方法CODA,它可以创建一个3D大尺度的肿瘤细胞图像。 通过组织组织学图像集成和训练的深度学习语义,在单细胞水平上进行肿瘤细胞解剖 算法高度期望进一步添加到该3D肿瘤细胞解剖图谱的是全基因组分子标记。 信息,如mRNA和一个大的面板蛋白质的细胞亚型,状态, 相互作用,并可能推断新的机制或治疗干预的目标。102 PI风扇 最近开发了一种名为DBiT-seq的新技术,用于高空间分辨率的多组学映射, 组织中细胞水平的确定性条形码(~10µm),全转录组规模(> 22,000个基因), 覆盖率(> 2,000个基因/10µm像素)和多组学分析(约300个蛋白质标记物的共定位), 可以容易地应用于FFPE组织切片并与CODA整合。在Tech 2中,我们提出以下建议 两个目标:目标1。一种高通量、低成本、高质量/覆盖率的多组学作图方法(DBiT-seq), 与人PFA和FFPE组织样本完全相容。AIM 2.集成CODA和DBiT-seq用于3D 多组肿瘤成像。这两个目标的成功完成将导致第一个全基因组的多- 组学3D视图的血管或淋巴管侵犯的人类肿瘤和一个强大的技术平台, 研究其他人类癌症的空间组织异质性的联盟。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Denis Wirtz其他文献

Denis Wirtz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Denis Wirtz', 18)}}的其他基金

Organ Specific Project
器官特定项目
  • 批准号:
    10531004
  • 财政年份:
    2022
  • 资助金额:
    $ 54.57万
  • 项目类别:
Organ Specific Project
器官特定项目
  • 批准号:
    10708880
  • 财政年份:
    2022
  • 资助金额:
    $ 54.57万
  • 项目类别:
Center for 3D Imaging in Cancer Cell Biology
癌细胞生物学 3D 成像中心
  • 批准号:
    10375190
  • 财政年份:
    2021
  • 资助金额:
    $ 54.57万
  • 项目类别:
Tech Core 2
技术核心2
  • 批准号:
    10375193
  • 财政年份:
    2021
  • 资助金额:
    $ 54.57万
  • 项目类别:
Center for 3D Imaging in Cancer Cell Biology
癌细胞生物学 3D 成像中心
  • 批准号:
    10532378
  • 财政年份:
    2021
  • 资助金额:
    $ 54.57万
  • 项目类别:
Center for 3D Imaging in Cancer Cell Biology
癌细胞生物学 3D 成像中心
  • 批准号:
    10375191
  • 财政年份:
    2021
  • 资助金额:
    $ 54.57万
  • 项目类别:
3D Whole-Pancreas Analysis of Mouse Models of Pancreatic Cancer
胰腺癌小鼠模型的 3D 全胰腺分析
  • 批准号:
    10830513
  • 财政年份:
    2021
  • 资助金额:
    $ 54.57万
  • 项目类别:
Center for 3D Imaging in Cancer Cell Biology
癌细胞生物学 3D 成像中心
  • 批准号:
    10532377
  • 财政年份:
    2021
  • 资助金额:
    $ 54.57万
  • 项目类别:
Validation of Nuclear Morphology as a Biomarker of Aging and Aging-Related Phenotypes
核形态作为衰老和衰老相关表型生物标志物的验证
  • 批准号:
    10424439
  • 财政年份:
    2018
  • 资助金额:
    $ 54.57万
  • 项目类别:
Validation of Nuclear Morphology as a Biomarker of Aging and Aging-Related Phenotypes
核形态作为衰老和衰老相关表型生物标志物的验证
  • 批准号:
    10199917
  • 财政年份:
    2018
  • 资助金额:
    $ 54.57万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.57万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 54.57万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 54.57万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 54.57万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 54.57万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 54.57万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 54.57万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 54.57万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 54.57万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 54.57万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了