A reference-free computational algorithm for comprehensive somatic mosaic mutation detection

一种用于综合体细胞嵌合突变检测的无参考计算算法

基本信息

  • 批准号:
    10662755
  • 负责人:
  • 金额:
    $ 38.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT Somatic mosaicism (SM), i.e. the presence of cells with somatically acquired mutations, is a driving feature of cancer and several developmental diseases. However, whereas today we have detailed understanding and predictive models of benign and pathogenic inherited polymorphisms, germline de novo mutations, and tumor mutations, we have only limited knowledge of the burden, allele frequency spectrum, clonal patterns, and mutational signatures of healthy somatic mosaicism. Realizing that such currently missing knowledge is critical for informing experimental design in future studies of mosaicism’s biological and clinical consequences, NIH is launching an ambitious initiative, the Somatic Mosaicism across Human Tissues (SMaHT) project to construct a comprehensive human somatic mosaicism atlas. As part of this initiative, funding announcement RFA-RM-22- 011 calls for Tool Development Projects to develop “approaches that significantly improve the sensitivity, accuracy, and threshold of detection of all types of somatic variants across the complete genome”. Such comprehensive detection is currently challenging because somatic mosaicism mutations occur across a wide range of mutation types and lengths, but the majority of today’s variant detection tools have low sensitivity for larger, structural events. Furthermore, somatic mutations are typically at very low allele frequency (<1%), but accurate detection of low-frequency variation today is beyond the capabilities of most tools. We have pioneered a unique-kmer guided detection approach in our RUFUS tool, designed for germline de novo mutation detection. This approach focuses on identifying the novel DNA sequence created by a mutation, which allows the same underlying algorithm, with uniform algorithmic behavior and sensitivity, to be applied across the full range of mutation types. RUFUS has been validated for accurately detecting germline de novo mutations in large discovery datasets and rare-disease diagnostic studies. Our preliminary analyses also indicate that RUFUS has high sensitivity across a full range of somatic mutations. This application proposes to adapt the RUFUS algorithm for somatic mosaic mutation detection with high sensitivity and specificity across the entire mutation type, mutation length, and allele frequency spectrum; and thus, substantially contribute to the construction of a comprehensive mosaicism atlas. To achieve this overall goal, in the first (UG3) phase of the project we will focus on algorithmic development to improve low-frequency allele detection, empirically characterize RUFUS’s sensitivity and specificity, and ready the tool for adoption into the SMaHT Network’s central analysis pipelines. In the second (UH3) phase of the project, we will integrate RUFUS into the central analysis workflow of the SMaHT consortium; optimize and extend its performance for analyzing the vast SMaHT somatic mosaicism dataset. We anticipate that RUFUS will contribute substantially to the SMaHT Initiative's goal to comprehensively map out human somatic mosaicism across individuals, organs, and tissues.
摘要 体细胞嵌合现象(SM),即存在具有体细胞获得性突变的细胞,是一个驱动特征, 癌症和几种发育性疾病。然而,尽管我们今天有了详细的了解, 良性和致病性遗传多态性、生殖系新生突变和肿瘤的预测模型 突变,我们只有有限的知识的负担,等位基因频谱,克隆模式, 健康体细胞嵌合体的突变特征认识到这些目前缺失的知识是至关重要的 为了在未来研究镶嵌现象的生物学和临床后果时为实验设计提供信息,NIH正在 启动了一项雄心勃勃的计划,即跨人类组织的体细胞镶嵌(SMaHT)项目,以构建一个 人体嵌合体综合图谱。作为该倡议的一部分,资金公告RFA-RM-22- 011呼吁工具开发项目开发“显著提高灵敏度的方法, 准确性和整个基因组中所有类型体细胞变异的检测阈值”。等 全面的检测目前是具有挑战性的,因为体细胞嵌合突变发生在广泛的 突变类型和长度的范围,但大多数今天的变异检测工具具有低灵敏度, 更大的结构性事件此外,体细胞突变通常处于非常低的等位基因频率(<1%),但 如今,低频变化的精确检测超出了大多数工具的能力。我们开创 RUFUS工具中的独特kmer引导检测方法,专为生殖系从头突变检测而设计。 这种方法的重点是识别由突变产生的新DNA序列,这使得相同的 基础算法,具有统一的算法行为和灵敏度,适用于整个范围 突变类型RUFUS已被验证用于准确检测大样本中的生殖系新生突变。 发现数据集和罕见疾病诊断研究。我们的初步分析还表明,RUFUS 对各种体细胞突变的高灵敏度。本申请建议调整RUFUS 用于体细胞嵌合突变检测的算法,其在整个系统中具有高灵敏度和特异性 突变类型、突变长度和等位基因频率谱;并且因此,基本上有助于基因突变。 综合马赛克地图集的构建。为了实现这一总体目标,在第一阶段(UG 3), 该项目我们将专注于算法开发,以改善低频等位基因检测,经验 描述RUFUS的敏感性和特异性,并准备将该工具纳入SMaHT网络的 中央分析管道。在项目的第二阶段(UH 3),我们将把RUFUS整合到中央 SMaHT联盟的分析工作流程;优化和扩展其性能,以分析庞大的SMaHT 体细胞镶嵌数据集。我们预计RUFUS将为SMaHT倡议的目标做出重大贡献 全面绘制出人体在个体、器官和组织上的嵌合体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gabor T Marth其他文献

Extending reference assembly models
  • DOI:
    10.1186/s13059-015-0587-3
  • 发表时间:
    2015-01-24
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Deanna M Church;Valerie A Schneider;Karyn Meltz Steinberg;Michael C Schatz;Aaron R Quinlan;Chen-Shan Chin;Paul A Kitts;Bronwen Aken;Gabor T Marth;Michael M Hoffman;Javier Herrero;M Lisandra Zepeda Mendoza;Richard Durbin;Paul Flicek
  • 通讯作者:
    Paul Flicek

Gabor T Marth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gabor T Marth', 18)}}的其他基金

Data Management Core
数据管理核心
  • 批准号:
    10682165
  • 财政年份:
    2023
  • 资助金额:
    $ 38.46万
  • 项目类别:
Accelerating genomic analysis for time critical clinical applications
加速时间紧迫的临床应用的基因组分析
  • 批准号:
    10593480
  • 财政年份:
    2023
  • 资助金额:
    $ 38.46万
  • 项目类别:
Calypso: a web software system supporting team-based, longitudinal genomic diagnostic care
Calypso:支持基于团队的纵向基因组诊断护理的网络软件系统
  • 批准号:
    10559599
  • 财政年份:
    2022
  • 资助金额:
    $ 38.46万
  • 项目类别:
Enhancing clinical diagnostic analysis with a robust de novo mutation detection tool
使用强大的从头突变检测工具增强临床诊断分析
  • 批准号:
    10608743
  • 财政年份:
    2022
  • 资助金额:
    $ 38.46万
  • 项目类别:
Calypso: a web software system supporting team-based, longitudinal genomic diagnostic care
Calypso:支持基于团队的纵向基因组诊断护理的网络软件系统
  • 批准号:
    10376642
  • 财政年份:
    2022
  • 资助金额:
    $ 38.46万
  • 项目类别:
Cardiovascular Development Data Resource Center (CDDRC)
心血管发育数据资源中心 (CDDRC)
  • 批准号:
    10461828
  • 财政年份:
    2020
  • 资助金额:
    $ 38.46万
  • 项目类别:
Cardiovascular Development Data Resource Center (CDDRC)
心血管发育数据资源中心 (CDDRC)
  • 批准号:
    10027798
  • 财政年份:
    2020
  • 资助金额:
    $ 38.46万
  • 项目类别:
Cardiovascular Development Data Resource Center (CDDRC)
心血管发育数据资源中心 (CDDRC)
  • 批准号:
    10242178
  • 财政年份:
    2020
  • 资助金额:
    $ 38.46万
  • 项目类别:
Longitudinal models of breast cancer for studying mechanisms of therapy response and resistance
用于研究治疗反应和耐药机制的乳腺癌纵向模型
  • 批准号:
    10457293
  • 财政年份:
    2018
  • 资助金额:
    $ 38.46万
  • 项目类别:
Longitudinal models of breast cancer for studying mechanisms of therapy response and resistance
用于研究治疗反应和耐药机制的乳腺癌纵向模型
  • 批准号:
    10228719
  • 财政年份:
    2018
  • 资助金额:
    $ 38.46万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了