Dynamic ECM-Mimicking Biomaterials for Ischemia Treatment
用于缺血治疗的动态 ECM 模拟生物材料
基本信息
- 批准号:10540794
- 负责人:
- 金额:$ 62.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-15 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAnastomosis - actionArchitectureBehaviorBinding SitesBiocompatible MaterialsBiologicalBiophysicsBlood VesselsBlood capillariesBlood flowCardiovascular systemCellsClinicClinicalCollagenComplexCoupledCouplingCrosslinkerCuesDataDevelopmentDisease modelElasticityEndotheliumEngineeringEngraftmentExtracellular MatrixGenerationsGoalsHealthHindlimbHumanHyaluronic AcidHybridsHydrogelsImplantIn SituIn VitroIschemiaLeadMechanicsMediatingMetalloproteasesMethodsModelingMolecularMorbidity - disease rateMorphogenesisOutcomePatientsPeptidesPeptoidsPerfusionPericytesPeripheralPeripheral arterial diseasePopulationPredispositionProcessProgenitor Cell EngraftmentPropertyReactionRecoveryRegulationSelf DirectionShapesSkinStimulusStructureSystemTestingTherapeuticTimeTissue EngineeringTissue TherapyTissuesTractionVascularizationWorkbioscaffoldcell assemblycell typecomputational pipelinescritical limb Ischemiacrosslinkdensitydithiolendothelial stem cellimprovedin vivoindividualized medicineinduced pluripotent stem celllimb amputationlimb ischemianecrotic tissueneovascularneovascularizationnon-invasive monitorpolarized cellpreservationresponseself assemblyspatiotemporalstem cellstherapeutically effectivevasculogenesis
项目摘要
Dynamic ECM-Mimicking Biomaterials for Ischemia Treatment
Peripheral artery disease (PAD) is the third most common cause of cardiovascular morbidity worldwide, present
in 20% of the population over 65. If PAD is not treated, it can progress to critical limb ischemia, resulting in tissue
necrosis and eventual limb amputation. Vasculogenesis, the process of de novo vessel formation from progenitor
cells, may prove an effective therapeutic strategy. Vasculogenesis may be accomplished by delivering vascular
progenitor cells derived from human induced pluripotent stem cells (hiPSCs-EPs), which have recently emerged
as a promising, patient-specific therapy. However, the optimal conditions for iPSCs-EPs engraftment and
anastomosis with the host vasculature are unclear, specifically, since the underlying molecular mechanisms that
guide these cells' self-assembly into vascular networks are poorly understood.
To overcome this hurdle, we propose to develop engineered vasculogenic hydrogels, presenting tunable
cues at the cell-matrix interface, that can enhance the therapeutic vasculogenesis of iPSC-EPs for
peripheral ischemia recovery and define the underlying mechanisms through which matrix properties
control vasculogenesis.
Previous work by us and others has shown that stable vascular network formation depends on both cell type and
matrix properties such as stiffness and degradability. Highly degradable matrices such as collagen may support
vasculogenesis initially, but long-term stability is challenging. Furthermore, these matrix properties are coupled
and impact endothelial and perivascular cell sprouting at different time scales in neo-vascular network formation.
Therefore, we hypothesize that temporal, in situ control over local matrix mechanics and degradability in
synthetic matrices will synergistically regulate the vascular morphogenesis of hiPSC-EPs, lead to stable, mature
vascular network formation and improve hind limb ischemia recovery. To test our hypothesis, we propose a
hybrid interpenetrating hydrogel network (IPN) comprised of collagen and norbornene-modified hyaluronic acid
(Coll/NorHA). This system has the advantage of combining the natural cues presented by collagen binding sites
and fibrous architecture with the in situ dynamic tunability of synthetic NorHA. Our goal is to 1) elucidate the
interplay between time-dependent matrix properties and mechanisms that govern vascular network development
and 2) enhance therapeutic vasculogenesis for PAD. In Aim 1, we will modulate the elasticity in these hydrogels
using in situ cross-linking reactions. We will study how stiffening at specific timepoints impacts the resulting
vasculogenic response both in vitro and in vivo in a skin fold model. In a complementary approach to Aim 1, in
Aim 2, we will isolate the effects of matrix degradability on iPSC-EPs vasculogenic potential using Coll/NorHA
IPNs in which proteolytic susceptibility is tuned with matrix metalloprotease-degradable peptides. In Aim 3, we
will test the synergistic impact of coupling matrix mechanics and degradability on iPSC-derived capillary plexus
formation. Specifically, we will elucidate how the maturation level of the in vitro grown vascular plexus enables
in vivo perfusion with host vasculature.
In summary, we propose to enhance therapeutic vasculogenesis of iPSC-EPs for peripheral artery disease
treatment through control of engineered matrix properties using a tunable Coll/NorHA IPN that mimics the
hierarchical temporal structure of native ECM. Elucidating the interplay between matrix properties and
mechanisms that govern vascular network development will identify angiogenic biomaterials that may be
deployed in the clinic to improve patients' vascular health and aid in disease modeling.
用于缺血治疗的动态仿ECM生物材料
外周动脉疾病(PAD)是全球心血管疾病发病率的第三大常见原因,
在65岁以上的人群中占20%。如果不治疗PAD,它可以发展为严重的肢体缺血,导致组织坏死。
最终导致肢体坏死和截肢血管发生,从祖细胞重新形成血管的过程
细胞,可能证明是一种有效的治疗策略。血管生成可以通过递送血管生成因子来实现。
来源于人诱导多能干细胞(hiPSCs-EPs)的祖细胞,其最近出现
作为一种有前景的针对患者的治疗方法。然而,iPSCs-EP移植的最佳条件和
特别是,与宿主血管系统的吻合尚不清楚,因为潜在的分子机制,
如何引导这些细胞自我组装成血管网络还知之甚少。
为了克服这一障碍,我们建议开发工程血管生成水凝胶,
细胞-基质界面的提示,可以增强iPSC-EP的治疗性血管发生,
外周缺血恢复,并确定通过基质性质
控制血管生成。
我们和其他人以前的工作表明,稳定的血管网形成取决于细胞类型和
基质性能如硬度和降解性。高度可降解的基质,如胶原蛋白,
血管生成最初,但长期稳定性是具有挑战性的。此外,这些矩阵属性耦合
并在新生血管网络形成的不同时间尺度上影响内皮细胞和血管周围细胞发芽。
因此,我们假设,时间,在原位控制局部基质力学和降解性,
合成基质将协同调节hiPSC-EP的血管形态发生,导致稳定的、成熟的
血管网的形成和改善后肢缺血的恢复。为了验证我们的假设,我们提出了一个
由胶原和聚乙烯改性透明质酸组成的混杂互穿水凝胶网络(IPN)
(Coll/NorHA)。该系统具有结合胶原蛋白结合位点所呈现的自然线索的优点
和纤维结构与合成NorHA的原位动态可调性。我们的目标是1)阐明
时间依赖性基质性质与控制血管网发育机制之间的相互作用
和2)增强PAD的治疗性血管生成。在目标1中,我们将调节这些水凝胶的弹性
使用原位交联反应。我们将研究特定时间点的硬化如何影响结果,
血管生成反应在体外和体内的皮肤褶皱模型。作为对目标1的补充,
目的2,我们将使用科尔/NorHA分离基质降解性对iPSC-EPs血管生成潜力的影响
其中蛋白水解敏感性用基质金属蛋白酶可降解肽调节的IPN。在目标3中,我们
将测试偶联基质力学和降解性对iPSC衍生的毛细血管丛的协同影响
阵具体来说,我们将阐明如何在体外生长的血管丛的成熟水平,
用宿主脉管系统进行体内灌注。
总之,我们建议增强iPSC-EP用于外周动脉疾病的治疗性血管生成,
通过使用可调的科尔/NorHA IPN控制工程化基质性质的处理,
原生ECM的分层时间结构。阐明基质性质与
控制血管网络发育的机制将确定可能
部署在诊所,以改善患者的血管健康并帮助疾病建模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Janeta Zoldan其他文献
Janeta Zoldan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Janeta Zoldan', 18)}}的其他基金
Dynamic ECM-Mimicking Biomaterials for Ischemia Treatment
用于缺血治疗的动态 ECM 模拟生物材料
- 批准号:
10367736 - 财政年份:2021
- 资助金额:
$ 62.3万 - 项目类别:
Painting Vasculature with Photosensitive Liposomes
用光敏脂质体绘制脉管系统
- 批准号:
10019353 - 财政年份:2019
- 资助金额:
$ 62.3万 - 项目类别:
Painting Vasculature with Photosensitive Liposomes
用光敏脂质体绘制脉管系统
- 批准号:
10224193 - 财政年份:2019
- 资助金额:
$ 62.3万 - 项目类别:














{{item.name}}会员




