Development of an artificial intelligence-driven, imaging-based platform for pretreatment identification of extranodal extension in head and neck cancer
开发人工智能驱动、基于成像的平台,用于头颈癌结外扩散的治疗前识别
基本信息
- 批准号:10540326
- 负责人:
- 金额:$ 16.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:Adjuvant TherapyAlgorithmsArtificial IntelligenceArtificial Intelligence platformBiopsyClinicClinicalClinical TrialsComplexDataData SetDecision MakingDetectionDevelopmentDiagnosisDiseaseEnrollmentEvaluationExtranodalEyeFoundationsFutureGeographyGoalsHeadHead and Neck CancerHead and Neck Squamous Cell CarcinomaHead and neck structureHealth Care CostsHumanImageImage AnalysisInfiltrationInstitutionLeadLymph Node InvolvementMachine LearningMalignant NeoplasmsManualsMapsMedical ImagingModalityMorbidity - disease rateNeck DissectionNewly DiagnosedOperative Surgical ProceduresOutputPathologicPathologyPathway interactionsPatientsPatternPerformancePhasePhase II Clinical TrialsPhysiciansPositioning AttributePositron-Emission TomographyProcessPrognostic FactorProspective cohortRadiationRadiation therapyResearchScanningScientistSpecificityTestingTimeTissuesTrainingTranslatingTreatment outcomeWorkX-Ray Computed Tomographyautomated segmentationcancer imagingcapsulechemoradiationchemotherapyclinical implementationcohortcomparison controlcomputerizedcostdeep learningdesigndisorder controldraining lymph nodeeffective therapyheuristicsimaging platformimprovedinsightinterestlymph nodesneural networkneural network architecturenoveloptimal treatmentspatient stratificationpersonalized cancer carephase II trialprediction algorithmprospectiveprospective testradiological imagingradiologistradiomicsrisk minimizationrisk stratificationside effectsuccesstherapy developmenttooltreatment planningtreatment strategytumorusability
项目摘要
Project Summary. The goal of this project is to develop, optimize, and evaluate an artificial intelligence (AI)-
driven, medical imaging platform that utilizes computed tomography (CT) imaging to identify the presence of
extranodal extension (ENE) in head and neck squamous cell carcinoma (HNSCC). HNSCC is a debilitating
disease with significant patient-related morbidity related to the disease itself and its management, which is
complex and consists of a combination of surgery, radiation, and chemotherapy. A key factor in determining
proper HNSCC management is the presence of ENE, which occurs when tumor infiltrates through the capsule
of an involved lymph node into the surrounding tissue. ENE is both an important prognostic factor and an
indication for adjuvant treatment escalation with the addition of chemotherapy to radiation following surgery.
This “trimodality therapy” is problematic, as it is associated with increased treatment-related morbidity and
healthcare costs, but no improvement in disease control compared to upfront chemoradiation alone. The
challenge is that ENE can only be definitively diagnosed pathologically after surgery, and pretreatment
radiographic ENE identification has proven unreliable for even expert diagnosticians, leading to high rates of
trimodality therapy and suboptimal treatment outcomes. In HNSCC management there is a critical need for
improved pretreatment ENE identification to 1) select appropriate patients for surgery to avoid the excess
morbidity and costs of trimodality therapy, 2) risk-stratify patients optimally, and 3) select appropriate patients
for treatment de-escalation or intensification clinical trials. In recent years, Deep learning, a subtype of machine
learning, under the umbrella of AI, has generated breakthroughs in computerized medical image analysis, at
times outperforming human experts and discovering patterns hidden to the naked eye. While AI is poised to
transform the fields of cancer imaging and personalized cancer care, there remain significant barriers to clinical
implementation. The hypothesis of this project is that AI can be used to successfully identify HNSCC ENE on
pretreatment imaging in retrospective and prospective patient cohorts and to develop a platform for lymph
node auto-segmentation that will promote clinical utility of the platform.
This hypothesis will be tested by rigorous optimization and evaluation of a deep learning ENE identification
platform. Specifically, the platform will be validated for accuracy, sensitivity, specificity, and discriminatory
performance on two heterogeneous retrospective datasets and two prospective cohorts derived from
institutional and national Phase II clinical trials for HNSCC patients. The platform will then be directly compared
with head and neck radiologists to determine if radiologist performance can be augmented with AI. In parallel,
AI will be utilized to develop an auto-segmentation platform for tumor and lymph nodes, which will 1) improve
the platform's clinical impact and 2) provide a valuable tool for treatment planning and future imaging-based
research for HNSCC patients.
1
项目摘要。该项目的目标是开发,优化和评估人工智能(AI)-
驱动的医学成像平台,其利用计算机断层扫描(CT)成像来识别
头颈部鳞状细胞癌(HNSCC)的淋巴结转移(ENE)。HNSCC是一种使人衰弱的
具有与疾病本身及其管理相关的显著患者相关发病率的疾病,
复杂,包括手术、放疗和化疗的组合。一个决定性的关键因素
适当的HNSCC处理是存在ENE,当肿瘤浸润穿过包膜时发生ENE
转移到周围组织中ENE既是一个重要的预后因素,
手术后在放疗基础上增加化疗的辅助治疗升级适应症。
这种“三联疗法”是有问题的,因为它与治疗相关的发病率增加有关,
医疗费用,但与单独的前期放化疗相比,疾病控制没有改善。的
挑战是ENE只能在手术后和治疗前进行明确的病理诊断,
放射学ENE识别已被证明即使对于专家诊断医生也是不可靠的,导致高比率的
三联疗法和次优治疗结果。在HNSCC管理中,迫切需要
改善治疗前ENE识别,以1)选择合适的患者进行手术,以避免过量
三联疗法的发病率和成本,2)最佳地对患者进行风险分层,3)选择合适的患者
用于治疗降级或强化临床试验。近年来,深度学习,机器学习的一个子类型,
在人工智能的保护下,学习在计算机化医学图像分析方面取得了突破,
超过人类专家的能力,发现肉眼看不到的模式。虽然AI准备
尽管癌症成像和个性化癌症护理领域的变革仍然存在重大的临床障碍,
实施.该项目的假设是,AI可以用于成功识别HNSCC ENE,
在回顾性和前瞻性患者队列中进行治疗前成像,并开发淋巴结转移的平台。
节点自动分割,这将促进平台的临床实用性。
这一假设将通过严格优化和评估深度学习ENE识别来进行测试
平台具体而言,将验证平台的准确性、灵敏度、特异性和区分性。
两个异质回顾性数据集和两个前瞻性队列的性能,
HNSCC患者的机构和国家II期临床试验。然后平台会直接比较
与头颈部放射科医生合作,以确定放射科医生的表现是否可以通过人工智能来增强。同时,
AI将用于开发肿瘤和淋巴结的自动分割平台,这将1)改善
该平台的临床影响和2)为治疗计划和未来基于成像的
HNSCC患者的研究。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Harris Kann其他文献
Benjamin Harris Kann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Harris Kann', 18)}}的其他基金
Development of an artificial intelligence-driven, imaging-based platform for pretreatment identification of extranodal extension in head and neck cancer
开发人工智能驱动、基于成像的平台,用于头颈癌结外扩散的治疗前识别
- 批准号:
10323383 - 财政年份:2021
- 资助金额:
$ 16.82万 - 项目类别:
相似海外基金
CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
- 批准号:
2236926 - 财政年份:2023
- 资助金额:
$ 16.82万 - 项目类别:
Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
- 批准号:
LP210200798 - 财政年份:2023
- 资助金额:
$ 16.82万 - 项目类别:
Linkage Projects
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
- 批准号:
2765246 - 财政年份:2022
- 资助金额:
$ 16.82万 - 项目类别:
Studentship
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 16.82万 - 项目类别:
Standard Grant
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
- 批准号:
ES/R00983X/2 - 财政年份:2022
- 资助金额:
$ 16.82万 - 项目类别:
Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 16.82万 - 项目类别:
Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
- 批准号:
10683803 - 财政年份:2022
- 资助金额:
$ 16.82万 - 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
- 批准号:
460558 - 财政年份:2022
- 资助金额:
$ 16.82万 - 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
- 批准号:
RGPIN-2022-04417 - 财政年份:2022
- 资助金额:
$ 16.82万 - 项目类别:
Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
- 批准号:
10544772 - 财政年份:2022
- 资助金额:
$ 16.82万 - 项目类别: