Engineering Human Interneurons for Neural Repair
工程人类中间神经元用于神经修复
基本信息
- 批准号:10559499
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnatomyAnimalsApplications GrantsBehavioralBiological AssayBrightfield MicroscopyCaringCell LineCell TherapyCellsCellular MorphologyCervical spinal cord injuryClimactericClinicalCommunicationDataDesigner DrugsDevelopmentDevelopmental BiologyDiseaseElectromyographyEmerging TechnologiesEngineeringEnsureEnvironmentFutureGeneticGoalsHomeobox GenesHumanHuman EngineeringIn VitroInduced pluripotent stem cell derived neuronsInjuryInstitutesInterneuronsKnowledgeLaboratoriesLearningLightMediatingMedicalModelingMotorMotor NeuronsMusNeeds AssessmentNervous System TraumaNeuraxisNeuritesNeurodegenerative DisordersNeuronal PlasticityNeuronsPathologicPharmacologyPhenotypePhysiologicalProteinsPublicationsPublishingRNARecoveryReporterReportingResearchResourcesRespiratory DiaphragmRodentSiteSourceSpinalSpinal CordSpinal cord injurySynapsesSystemTechniquesTechnologyTestingTherapeuticTherapy trialTimeTissuesTrainingTransgenic MiceTransplantationUndifferentiatedViralWorkbasecareer developmentcareer networkingcellular engineeringcentral nervous system injurydesigner receptors exclusively activated by designer drugsdisabilityembryonic stem cellexperimental studyfetalfunctional plasticityhuman stem cellsimproved outcomeinduced pluripotent stem cellinjuredinjury and repairinsightmouse modelmulti-electrode arraysmultidimensional datanerve injurynerve stem cellneural circuitneural networkneural repairnoveloptogeneticspost-transplantpre-clinicalpreclinical studyrelating to nervous systemrepair strategyrepairedresearch visionrestorationsingle-cell RNA sequencingskillsstemstem cellssynaptic functionsynaptogenesistherapeutic targettranscription factortranscriptomics
项目摘要
PROJECT SUMMARY/ABSTRACT
Emerging technologies, such as cell-based repair strategies, offer new promise for some of the most devastating
medical conditions that currently lack treatments. However, to harness the full therapeutic potential of stem cells,
it will be necessary to understand how to direct their differentiation to appropriate cell phenotypes and ensure
that their phenotype and function persist after transplantation into a pathologic environment. These gaps in
knowledge are the cornerstones of my long-term training plan. My research vision is focused on creating human
induced pluripotent stem cell (iPSC)-based tissues that enable the study of human central nervous circuits to
accelerate the identification of therapeutic targets for neural circuit restoration in the setting of disease and injury.
To do so, I will build upon my doctoral studies and publications using pre-clinical spinal cord injury as a testbed
for my hypotheses regarding the therapeutic potential of transplanted human iPSC-derived neural tissue. Spinal
cord injury (SCI) is a devastating condition, resulting in irreversible, life-changing disabilities. However, pre-
clinical studies and clinical reports have demonstrated a remarkable innate neuroplastic potential of the injured
central nervous system. Key to this neuroplasticity are spinal interneurons. Spinal interneurons are recognized
as having potential for serving as synaptic relays across sites of spinal trauma and altering their activity to
facilitate functional plasticity. The primary goal of this proposal is to determine if specific interneuronal sub-types
generated from human stem cells can be used to restore functional connectivity in the injured nervous system.
Building upon my previous work, I will use cutting edge technology to generate and phenotype human excitatory
spinal interneurons to investigate formation of functional neural networks in vitro (Aim 1) and assess their
phenotypic persistence and functional changes after transplantation into the intact and injured spinal cord (Aim
2). I will transplant human iPSC-derived neurons into a transgenic mouse model (excitatory and inhibitory V2a-
DREADD) with SCI, which will enable functional interrogation of host-donor-host connections with the use of
designer drugs. Successful completion of this project will reveal the first insight into the therapeutic potential of
engineered human interneurons for neural repair and will provide the preliminary data I will use in future career
development grant applications. Completing this work at Gladstone Institutes will enable me to develop an
impeccable professional network to learn cellular engineering, master single cell RNA techniques for
characterization, and build novel analytical workflows to visualize multi-dimensional data. More importantly, it
will give me the opportunity to take advantage of resources at Gladstone and UCSF to strengthen my scientific
communication skills and pursue professional development opportunities.
项目总结/摘要
新兴技术,如基于细胞的修复策略,为一些最具破坏性的疾病提供了新的希望。
目前缺乏治疗的疾病。然而,为了充分利用干细胞的治疗潜力,
有必要了解如何引导它们分化为合适的细胞表型,
它们的表型和功能在移植到病理环境中后仍然存在。这些差距在
知识是我长期培训计划的基石。我的研究目标是创造人类
诱导多能干细胞(iPSC)为基础的组织,使人类中枢神经回路的研究,
加速确定疾病和损伤情况下神经回路恢复的治疗靶点。
为此,我将以临床前脊髓损伤为试验平台,
我关于移植的人类iPSC衍生神经组织的治疗潜力的假设。脊柱
脊髓损伤(SCI)是一种毁灭性的疾病,导致不可逆转的,改变生活的残疾。然而,前-
临床研究和临床报告已经证明了损伤的先天性神经可塑性潜能
中枢神经系统这种神经可塑性的关键是脊髓中间神经元。脊髓中间神经元被识别为
作为脊髓创伤部位的突触中继,并改变它们的活性,
促进功能可塑性。这项建议的主要目标是确定是否特定的中间神经元亚型
从人类干细胞中产生的细胞可以用来恢复受损神经系统的功能连接。
基于我以前的工作,我将使用尖端技术来产生和表型人类兴奋性
脊髓中间神经元,以研究体外功能神经网络的形成(目的1),并评估其
移植到完整和损伤的脊髓后表型持久性和功能变化(目的
2)。我将把人类iPSC衍生的神经元移植到转基因小鼠模型中(兴奋性和抑制性V2 a-
DREADD)与SCI,这将使主机-供体-主机连接的功能询问与使用
特制毒品该项目的成功完成将揭示第一次洞察到的治疗潜力,
工程人类中间神经元的神经修复,并将提供初步的数据,我将在未来的职业生涯中使用
发展补助金申请。在格莱斯顿研究所完成这项工作将使我能够开发一个
无可挑剔的专业网络学习细胞工程,掌握单细胞RNA技术,
特性,并建立新的分析工作流程,以可视化多维数据。更重要的是
这将使我有机会利用格拉德斯通和加州大学旧金山分校的资源,加强我的科学
沟通技巧并寻求专业发展机会。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cell transplantation to repair the injured spinal cord.
- DOI:10.1016/bs.irn.2022.09.008
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Hall, Adam;Fortino, Tara;Spruance, Victoria;Niceforo, Alessia;Harrop, James S;Phelps, Patricia E;Priest, Catherine A;Zholudeva, Lyandysha V;Lane, Michael A
- 通讯作者:Lane, Michael A
Respiratory plasticity following spinal cord injury: perspectives from mouse to man.
- DOI:10.4103/1673-5374.335839
- 发表时间:2022-10
- 期刊:
- 影响因子:6.1
- 作者:Locke, Katherine;Randelman, Margo;Hoh, Daniel;Zholudeva, Lyandysha;Lane, Michael
- 通讯作者:Lane, Michael
Respiratory Training and Plasticity After Cervical Spinal Cord Injury.
- DOI:10.3389/fncel.2021.700821
- 发表时间:2021
- 期刊:
- 影响因子:5.3
- 作者:Randelman M;Zholudeva LV;Vinit S;Lane MA
- 通讯作者:Lane MA
High frequency repetitive Transcranial Magnetic Stimulation promotes long lasting phrenic motoneuron excitability via GABAergic networks.
- DOI:10.1016/j.resp.2021.103704
- 发表时间:2021-10
- 期刊:
- 影响因子:2.3
- 作者:Michel-Flutot, Pauline;V. Zholudeva, Lyandysha;Randelman, Margo L.;Deramaudt, Therese B.;Mansart, Arnaud;Alvarez, Jean-Claude;Lee, Kun-Ze;Petitjean, Michel;Bonay, Marcel;Lane, Michael A.;Vinit, Stephane
- 通讯作者:Vinit, Stephane
Effects of Chronic High-Frequency rTMS Protocol on Respiratory Neuroplasticity Following C2 Spinal Cord Hemisection in Rats.
- DOI:10.3390/biology11030473
- 发表时间:2022-03-19
- 期刊:
- 影响因子:4.2
- 作者:Michel-Flutot P;Jesus I;Vanhee V;Bourcier CH;Emam L;Ouguerroudj A;Lee KZ;Zholudeva LV;Lane MA;Mansart A;Bonay M;Vinit S
- 通讯作者:Vinit S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lyandysha Viktorovna Zholudeva其他文献
Lyandysha Viktorovna Zholudeva的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lyandysha Viktorovna Zholudeva', 18)}}的其他基金
Engineering human interneurons for neural repair
工程人类中间神经元用于神经修复
- 批准号:
10285320 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Research Grant














{{item.name}}会员




