Engineering Human Interneurons for Neural Repair

工程人类中间神经元用于神经修复

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Emerging technologies, such as cell-based repair strategies, offer new promise for some of the most devastating medical conditions that currently lack treatments. However, to harness the full therapeutic potential of stem cells, it will be necessary to understand how to direct their differentiation to appropriate cell phenotypes and ensure that their phenotype and function persist after transplantation into a pathologic environment. These gaps in knowledge are the cornerstones of my long-term training plan. My research vision is focused on creating human induced pluripotent stem cell (iPSC)-based tissues that enable the study of human central nervous circuits to accelerate the identification of therapeutic targets for neural circuit restoration in the setting of disease and injury. To do so, I will build upon my doctoral studies and publications using pre-clinical spinal cord injury as a testbed for my hypotheses regarding the therapeutic potential of transplanted human iPSC-derived neural tissue. Spinal cord injury (SCI) is a devastating condition, resulting in irreversible, life-changing disabilities. However, pre- clinical studies and clinical reports have demonstrated a remarkable innate neuroplastic potential of the injured central nervous system. Key to this neuroplasticity are spinal interneurons. Spinal interneurons are recognized as having potential for serving as synaptic relays across sites of spinal trauma and altering their activity to facilitate functional plasticity. The primary goal of this proposal is to determine if specific interneuronal sub-types generated from human stem cells can be used to restore functional connectivity in the injured nervous system. Building upon my previous work, I will use cutting edge technology to generate and phenotype human excitatory spinal interneurons to investigate formation of functional neural networks in vitro (Aim 1) and assess their phenotypic persistence and functional changes after transplantation into the intact and injured spinal cord (Aim 2). I will transplant human iPSC-derived neurons into a transgenic mouse model (excitatory and inhibitory V2a- DREADD) with SCI, which will enable functional interrogation of host-donor-host connections with the use of designer drugs. Successful completion of this project will reveal the first insight into the therapeutic potential of engineered human interneurons for neural repair and will provide the preliminary data I will use in future career development grant applications. Completing this work at Gladstone Institutes will enable me to develop an impeccable professional network to learn cellular engineering, master single cell RNA techniques for characterization, and build novel analytical workflows to visualize multi-dimensional data. More importantly, it will give me the opportunity to take advantage of resources at Gladstone and UCSF to strengthen my scientific communication skills and pursue professional development opportunities.
项目摘要/摘要 新兴技术(例如基于细胞的维修策略)为某些最具破坏性的人提供了新的希望 目前缺乏治疗的医疗状况。但是,为了利用干细胞的全部治疗潜力, 有必要了解如何将它们的区分引导为适当的细胞表型并确保 将其表型和功能移植到病理环境后持续存在。这些差距 知识是我长期培训计划的基石。我的研究愿景专注于创造人类 诱导多能干细胞(IPSC)基于基于人类中枢神经回路的组织 在疾病和损伤的情况下加速鉴定神经回路恢复的治疗靶标。 为此,我将使用临床前的脊髓损伤作为测试床以博士生研究和出版物为基础 对于我关于移植的人IPSC衍生神经组织的治疗潜力的假设。脊 绳索损伤(SCI)是一种毁灭性的状况,导致不可逆的,改变生活的残疾。但是,前 临床研究和临床报道表明受伤的固有神经塑性潜力显着 中枢神经系统。这种神经可塑性的关键是脊柱中间神经元。脊柱中间神经元被识别 因为有潜力作为跨脊柱创伤部位的突触中继的潜力,并将其活性改变为 促进功能可塑性。该提案的主要目标是确定特定的神经元间子类型是否 由人干细胞产生的可用于恢复受伤的神经系统中的功能连通性。 在我以前的工作的基础上,我将使用尖端技术来产生和表型人类兴奋性 脊柱中间神经元研究体外功能神经网络的形成(AIM 1)并评估其 移植到完整和受伤的脊髓后的表型持久性和功能变化(AIM 2)。我将将人IPSC衍生的神经元移植到转基因小鼠模型(兴奋性和抑制性V2A-)中 dreadd)与SCI,这将通过使用的功能性询问宿主 - 主持人连接 设计师药物。该项目的成功完成将揭示首先了解的治疗潜力 设计的人类中间神经元用于神经修复,并将提供我将在未来职业中使用的初步数据 开发赠款申请。在Gladstone Institutes完成这项工作将使我能够开发一个 无可挑剔的专业网络学习蜂窝工程,主要单细胞RNA技术 表征并构建新颖的分析工作流程以可视化多维数据。更重要的是,它 将使我有机会利用Gladstone和UCSF的资源来加强我的科学 沟通技巧并寻求专业发展机会。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cell transplantation to repair the injured spinal cord.
  • DOI:
    10.1016/bs.irn.2022.09.008
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hall, Adam;Fortino, Tara;Spruance, Victoria;Niceforo, Alessia;Harrop, James S;Phelps, Patricia E;Priest, Catherine A;Zholudeva, Lyandysha V;Lane, Michael A
  • 通讯作者:
    Lane, Michael A
Respiratory Training and Plasticity After Cervical Spinal Cord Injury.
  • DOI:
    10.3389/fncel.2021.700821
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Randelman M;Zholudeva LV;Vinit S;Lane MA
  • 通讯作者:
    Lane MA
Respiratory plasticity following spinal cord injury: perspectives from mouse to man.
  • DOI:
    10.4103/1673-5374.335839
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Locke, Katherine;Randelman, Margo;Hoh, Daniel;Zholudeva, Lyandysha;Lane, Michael
  • 通讯作者:
    Lane, Michael
Effects of Chronic High-Frequency rTMS Protocol on Respiratory Neuroplasticity Following C2 Spinal Cord Hemisection in Rats.
  • DOI:
    10.3390/biology11030473
  • 发表时间:
    2022-03-19
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Michel-Flutot P;Jesus I;Vanhee V;Bourcier CH;Emam L;Ouguerroudj A;Lee KZ;Zholudeva LV;Lane MA;Mansart A;Bonay M;Vinit S
  • 通讯作者:
    Vinit S
Harnessing Spinal Interneurons for Spinal Cord Repair.
  • DOI:
    10.1177/26331055221101607
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Zholudeva, Lyandysha, V;Lane, Michael A.
  • 通讯作者:
    Lane, Michael A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lyandysha Viktorovna Zholudeva其他文献

Lyandysha Viktorovna Zholudeva的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lyandysha Viktorovna Zholudeva', 18)}}的其他基金

Engineering human interneurons for neural repair
工程人类中间神经元用于神经修复
  • 批准号:
    10285320
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:

相似国自然基金

儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
  • 批准号:
    82360892
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
  • 批准号:
    82201271
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
  • 批准号:
    32201547
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
  • 批准号:
    10699190
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
  • 批准号:
    10656110
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
Integrative Analysis of Adaptive Information Processing and Learning-Dependent Circuit Reorganization in the Auditory System
听觉系统中自适应信息处理和学习依赖电路重组的综合分析
  • 批准号:
    10715925
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
A Neuropeptidergic Neural Network Integrates Taste with Internal State to Modulate Feeding
神经肽能神经网络将味觉与内部状态相结合来调节进食
  • 批准号:
    10734258
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
Transovarial transmission of yersinia pestis in fleas
跳蚤中鼠疫耶尔森氏菌的跨卵巢传播
  • 批准号:
    10727534
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了