Real-time measurement of joint-loading for osteoarthritis study and treatment
实时测量关节负荷,用于骨关节炎研究和治疗
基本信息
- 批准号:10566872
- 负责人:
- 金额:$ 6.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AmericanAnatomyAnimalsAutologous TransplantationBenchmarkingCartilageCellsChondrogenesisClinicalComplexDefectDegenerative polyarthritisDevicesDiseaseEngineeringEvolutionExcisionExhibitsFailureFilmGrowthHyaline CartilageImplantIn VitroJointsKneeLegLifeLimb structureMeasurementMeasuresMechanical StimulationMechanicsMedicalMedicineMethodsMonitorMotionNatural regenerationOperative Surgical ProceduresOryctolagus cuniculusOutcomePatientsPerformancePhysical ExercisePhysical therapyPlayPolymersProcessPropertyReportingRoleSurgical suturesSystemTheoretical modelTimeTissue EngineeringTissue GraftsTissuesVariantWeight-Bearing statebiomaterial compatibilitybonecartilage regenerationcartilage repaircartilage transplantationdistractionflexibilityforce sensorhealingimplantationimplanted sensorin vivoin vivo monitoringin vivo regenerationindividual patientinjuredinnovationinstrumentjoint loadingknee replacement arthroplastymechanical loadosteochondral tissuepatient populationpressure sensorreal time monitoringreduce symptomsregenerativescaffoldsensorstemsuccesstemporal measurementtissue regenerationtoolultrasoundwirelesswireless sensor
项目摘要
Abstract
Millions of American suffer from Osteoarthritis (OA) while available medicines only alleviate symptoms but do
not actually treat this disease. Surgically, the golden method so far has been to use substitutive tissue grafts
which can be obtained from the same patients (i.e. auto-grafts) or other donors (e.g. allo-grafts) or constructed
by tissue-engineering approach. However, these replacement grafts often suffer from mechanical failures and
long-term instability. Many of them fail to regenerate hyaline cartilages which are required for healthy load-
bearing cartilage tissues. Joint-loading, directly applied on cartilage tissues during joint-motions, plays a
significant role for such mechanical failures and regenerative capability of replacement cartilage grafts. While
joint-force, beyond a certain range, damages the cartilages, the force with appropriate magnitudes can promote
healing of injured tissues. Despite numerous evidences on the important role of joint-loading, studies and
applications of mechanical stimulation for the treatment of OA are very limited in in vivo conditions and clinical
settings. This limitation mainly stems from the lack of information about actual joint-force which is directly applied
on replacement cartilage grafts during motion of joints in vivo. To obtain such information, it is thus needed to
develop a special force sensor that can possess several desired functions and properties. First, the tools need
to be ultrathin and can be seamlessly integrated with replacement cartilage grafts to avoid being detached and
disturbing the joint’s complex mechanics during implantation. Second, the sensors should be bioresorbable to
not interfere in tissue regeneration and avoid any invasive removal surgery, which would damage the directly-
interfaced cartilages. And finally, the sensor can provide a continuous real-time monitoring of the force during
joint motions in vivo. Here, we will study, for the first time, a device-cartilage interface between the
piezoelectric PLLA pressure sensor and a replacement cartilage auto-graft, which together can monitor
in vivo joint-loading and heal cartilage-defects. The sensor system will provide accurate and reliable
information about joint-loading, which can be used to track OA-evolution/cause in relation with cartilage-force
and ultimately, combined with physical therapy or other mechanical stimulations to induce an optimal joint-force
for the best cartilage regeneration in vivo. The sensor will be then self-degraded, facilitating tissue ingrowth and
avoiding any invasive removal surgery. Accordingly, our proposal has two specific aims. Aim 1 is to assess
functional lifetime, degradation profile and performance of the proposed biodegradable PLLA sensors for
measuring simulated joint-loading in vitro. Aim 2 is to assess the healing of cartilage defects, receiving autografts
integrated with the PLLA sensors and demonstrate reliability of the sensors to wirelessly measure real-time joint-
loading in vivo.
摘要
数以百万计的美国人患有骨关节炎(OA),而现有的药物只能缓解症状,但不能
而不是真正治疗这种疾病。在外科手术中,迄今为止最好的方法是使用替代组织移植物
其可以从相同的患者(即自体移植物)或其他供体(例如同种异体移植物)获得或构建
通过组织工程的方法。然而,这些替代移植物经常遭受机械故障,
长期不稳定。他们中的许多人无法再生健康负荷所需的透明软骨-
长着软骨组织关节运动时直接作用于软骨组织的关节负荷,
对于这种机械失效和替代软骨移植物的再生能力具有重要作用。而
关节力超过一定范围时,软骨会受到损伤,适当大小的力可以促进关节软骨的损伤
愈合受伤的组织。尽管有许多证据表明关节负荷的重要作用,研究和
用于治疗OA的机械刺激的应用在体内条件和临床上非常有限
设置.这种局限性主要源于缺乏直接应用的实际关节力的信息
在体内关节运动过程中对替代软骨移植物的影响。为了获得这些信息,需要
开发一种特殊的力传感器,可以拥有几个所需的功能和属性。首先,需要的工具
可以与替代软骨移植物无缝结合,以避免分离,
在植入过程中干扰关节的复杂力学。第二,传感器应该是生物可吸收的,
不干扰组织再生,避免任何侵入性切除手术,这将直接损害-
连接的软骨最后,传感器可以提供连续的实时监测力,
体内的关节运动。在这里,我们将首次研究器械-软骨界面,
压电PLLA压力传感器和替代软骨自体移植物,它们一起可以监测
体内关节负荷和愈合软骨缺损。传感器系统将提供准确可靠的
关于关节负荷的信息,可用于跟踪与软骨力相关的OA演变/原因
并最终与物理治疗或其他机械刺激相结合以诱导最佳关节力
以获得体内最佳的软骨再生。然后传感器将自降解,促进组织向内生长,
避免任何侵入性的移除手术。因此,我们的建议有两个具体目标。目标1:评估
所提出的可生物降解PLLA传感器的功能寿命、降解曲线和性能,
测量体外模拟关节负荷。目的2是评估接受自体移植的软骨缺损的愈合情况
与PLLA传感器集成,并证明传感器的可靠性,以无线方式实时测量关节,
体内加载。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thanh Nguyen其他文献
Thanh Nguyen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thanh Nguyen', 18)}}的其他基金
Novel Piezoelectric Amino-acid Ultrasound Transducer to Deliver Drugs Through the Blood Brain Barrier
新型压电氨基酸超声换能器通过血脑屏障输送药物
- 批准号:
10636328 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Single-administration microneedles with controlled sustained release of non-opioid analgesics to treat osteoarthritis pain
单次给药微针控制缓释非阿片类镇痛药治疗骨关节炎疼痛
- 批准号:
10425794 - 财政年份:2022
- 资助金额:
$ 6.91万 - 项目类别:
Single-administration microneedles with controlled sustained release of non-opioid analgesics to treat osteoarthritis pain
单次给药微针控制缓释非阿片类镇痛药治疗骨关节炎疼痛
- 批准号:
10721752 - 财政年份:2022
- 资助金额:
$ 6.91万 - 项目类别:
Single-administration microneedles with controlled sustained release of non-opioid analgesics to treat osteoarthritis pain
单次给药微针控制缓释非阿片类镇痛药治疗骨关节炎疼痛
- 批准号:
10618335 - 财政年份:2022
- 资助金额:
$ 6.91万 - 项目类别:
Biodegradable Piezoelectric Nanocomposite Scaffold with Physical Exercise to Heal Major Cartilage Defects in Large Animals
可生物降解的压电纳米复合支架与体育锻炼可治愈大型动物的主要软骨缺陷
- 批准号:
10342706 - 财政年份:2022
- 资助金额:
$ 6.91万 - 项目类别:
Biodegradable Piezoelectric Nanocomposite Scaffold with Physical Exercise to Heal Major Cartilage Defects in Large Animals
可生物降解的压电纳米复合支架与体育锻炼可治愈大型动物的主要软骨缺陷
- 批准号:
10634516 - 财政年份:2022
- 资助金额:
$ 6.91万 - 项目类别:
Real-time Measurement of Joint-loading for Osteoarthritis Study and Treatment R21AR078744
用于骨关节炎研究和治疗的关节负荷实时测量 R21AR078744
- 批准号:
10362159 - 财政年份:2021
- 资助金额:
$ 6.91万 - 项目类别:
Real-time measurement of joint-loading for osteoarthritis study and treatment
实时测量关节负荷,用于骨关节炎研究和治疗
- 批准号:
10359757 - 财政年份:2021
- 资助金额:
$ 6.91万 - 项目类别:
Biodegradable and Biocompatible Piezoelectric Nanofiber Mat for Wound Dressing
用于伤口敷料的可生物降解和生物相容性压电纳米纤维垫
- 批准号:
10046001 - 财政年份:2020
- 资助金额:
$ 6.91万 - 项目类别:
Biodegradable and Biocompatible Piezoelectric Nanofiber Mat for Wound Dressing
用于伤口敷料的可生物降解和生物相容性压电纳米纤维垫
- 批准号:
10220853 - 财政年份:2020
- 资助金额:
$ 6.91万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 6.91万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 6.91万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 6.91万 - 项目类别:
Studentship














{{item.name}}会员




