Computational toolbox for spatial transcriptomic analysis of complex tissues
用于复杂组织空间转录组分析的计算工具箱
基本信息
- 批准号:10666294
- 负责人:
- 金额:$ 43.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-21 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAnatomyBiomedical ResearchBrain DiseasesCell CommunicationCellsClinicalCommunicationComplexComputer softwareComputing MethodologiesDataData SetDependenceDevelopmentDiagnosisDiseaseDisease ProgressionEvaluationFunding MechanismsGene ExpressionGenetic TranscriptionGenomicsGoalsHistologyHistopathologyImageImmuneLocationMachine LearningMammary NeoplasmsMapsMeasurementMethodsModalityModelingModernizationMolecularMolecular ProfilingMorphologyNeighborhoodsNormal RangeOrganoidsPatientsPatternPlayProceduresProcessPublishingResolutionRoleSamplingSpottingsSystemTechniquesTechnologyTherapeuticTissue SampleTissue imagingTissuesTumor TissueVisualizationWorkbrain tissuecell typecohortcomputerized toolsdata integrationdeep learningdesigngenomic datahigh dimensionalityhistological imageimage processingimprovedinnovationinsightmachine learning frameworkmachine learning methodmachine learning modelmultidimensional datamultimodalitynovelopen sourcesingle cell analysissingle-cell RNA sequencingspatial integrationsupervised learningtooltranscriptometranscriptomicstreatment response
项目摘要
PROJECT SUMMARY
Mapping the spatial organization of cells and their communication in tissues is essential to understanding the
process of development and disease formation. The rapid development of spatial transcriptomic technologies
has enabled the profiling of the full transcriptome across thousands of locations in a tissue sample. In addition
to transcriptional measurements, this technology also obtains paired histological imaging of the tissue.
The spatially resolved profiling of gene expression has the potential to unlock groundbreaking discoveries,
however, there are critical barriers in analyzing this data especially in complex tissue samples that involve the
mixing of many diverse cell types in capture locations (spots). The low resolution makes it difficult to discern
diverse cell types which is essential for downstream analysis of their spatial organization, dynamics, and
interactions. Additionally, integrating spatial transcriptomic datasets across multiple tissue samples is not
straightforward due to this technical limitation. Existing computational tools for analyzing high-dimensional
genomic data were either built for single-cell resolution data or require paired single-cell transcriptomic data to
guide the analysis of spatial transcriptomic data. Additionally, current methods do not consider spatial
dependencies and information embedded in the histology image.
The overarching goal of this proposal is to develop novel machine learning methods for analyzing the new
wave of spatial transcriptomic data without the need for paired single-cell data as a reference. These
innovative frameworks will enable characterizing diverse cell states and their spatial dynamics through a
semi-supervised deconvolution of data (Aim 1) which will also allow integration of data from multiple tissue
samples. We will also develop a multi-view framework for the integration of spatial transcriptomic and
histological imaging for improved inference of intercellular interactions (Aim 2). By combining image processing
algorithms for the alignment of images from replicate samples, we will extend this framework for integrating
tissue samples.
Our toolbox will be applicable to a broad range of tissue systems and larger clinical cohorts and has the
potential to be transformative in understanding spatial dynamics during healthy development and guiding
diagnosis and therapeutic strategies based on the spatial organization of cell types specific to the disease
microenvironment.
项目总结
绘制细胞的空间组织及其在组织中的通信图对于理解
发展和疾病形成的过程。空间转录技术的快速发展
已经能够对组织样本中数千个位置的完整转录组进行分析。此外
对于转录测量,这项技术还可以获得组织的配对组织成像。
基因表达的空间分辨图谱有可能揭开突破性发现的面纱,
然而,在分析这些数据方面存在关键障碍,特别是在涉及到
在捕获位置(斑点)混合多种不同类型的细胞。分辨率低,很难辨别
不同的单元类型,这对于后续分析其空间组织、动力学和
互动。此外,跨多个组织样本整合空间转录数据集并不是
由于这一技术限制,这一点很简单。用于分析高维数据的现有计算工具
基因组数据要么是为单细胞分辨率数据构建的,要么是需要配对的单细胞转录数据来
指导空间转录数据分析。此外,目前的方法不考虑空间
组织学图像中嵌入的依赖项和信息。
这项提议的总体目标是开发新的机器学习方法来分析新的
波的空间转录数据不需要配对的单细胞数据作为参考。这些
创新的框架将能够通过一个
半监督数据去卷积(目标1),还将允许整合来自多个组织的数据
样本。我们还将开发一个多视图框架,用于整合空间转录和
用于改进细胞间相互作用推断的组织成像(目标2)。通过结合图像处理
用于从复制样本中对齐图像的算法,我们将扩展该框架以用于集成
组织样本。
我们的工具箱将适用于广泛的组织系统和更大的临床队列,并具有
在健康发展和引导中理解空间动力学具有变革的潜力
基于疾病特定细胞类型的空间组织的诊断和治疗策略
微环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elham Azizi其他文献
Elham Azizi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elham Azizi', 18)}}的其他基金
Machine learning methods for interpreting spatial multi-omics data
用于解释空间多组学数据的机器学习方法
- 批准号:
10585386 - 财政年份:2023
- 资助金额:
$ 43.55万 - 项目类别:
Integrative framework for identifying dysregulated mechanisms in the tumor-immune microenvironment
识别肿瘤免疫微环境失调机制的综合框架
- 批准号:
10159875 - 财政年份:2020
- 资助金额:
$ 43.55万 - 项目类别:
Integrative framework for identifying dysregulated mechanisms in the tumor-immune microenvironment
识别肿瘤免疫微环境失调机制的综合框架
- 批准号:
10392487 - 财政年份:2020
- 资助金额:
$ 43.55万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 43.55万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 43.55万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 43.55万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 43.55万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 43.55万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 43.55万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 43.55万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 43.55万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 43.55万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 43.55万 - 项目类别:
Research Grant