Auditing Social Media Algorithmic Pathways to Measure Prevalence of Online Misinformation Related to Opioid Misuse
审核社交媒体算法路径以衡量与阿片类药物滥用相关的在线错误信息的流行程度
基本信息
- 批准号:10666308
- 负责人:
- 金额:$ 24.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgeAlgorithm DesignAlgorithmsAutomobile DrivingAwarenessBehaviorBehavior DisordersBehavior TherapyCOVID-19 pandemicCause of DeathCharacteristicsClinicalClinical TreatmentComputersCounselingCoupledDangerousnessDataDiagnosisEarly DiagnosisEnvironmentEpidemicEvaluationEvidence based interventionExposure toFacebookFoundationsFutureGenderGoalsHealthImprove AccessIndividualInfrastructureIntelligenceInternetInterventionInterviewInvestigationKnowledgeLettersLightLocationMachine LearningMeasuresMethodologyMethodsMisinformationMorphologic artifactsNational Institute of Drug AbuseNatural Language ProcessingOutcomeParticipantPathway interactionsPatient-Focused OutcomesPatientsPersonsPharmaceutical PreparationsPoliciesPrevalencePsychologistPublic HealthQualitative EvaluationsReactionRecommendationRecoveryRehabilitation therapyResearchResearch DesignResourcesRiskRisk BehaviorsRisk ReductionRoleScientistSiteSortingStatistical Data InterpretationStrategic PlanningSubstance Use DisorderSurfaceSymbiosisSystemTechniquesTechnologyTimeTreatment outcomeTwitterUnited StatesWorkaddictionbehavioral healthcost effectivedesigndetection methoddisorder riskempowermentexperimental studyhealth literacyimprovedinnovationinsightinterestmachine learning methodmedication for opioid use disordermedication-assisted treatmentmultidisciplinarynew technologynovelonline resourceopioid misuseopioid overdoseopioid use disorderoverdose riskpreventrecruitresponsesharing platformsocial mediasocial stigmastandard caresubstance misusesustained recoverytool
项目摘要
Abstract: Opioid misuse has become a public health epidemic in the United States with more than 70% of indi-
viduals with an opioid use disorder (OUD) never receiving any sort of treatment. Even fewer receive medications
for addiction treatment (MAT)—the gold standard for treatment and a safe, cost-effective way to reduce the risk of
overdose while improving the likelihood of sustained recovery. Due to the stigma surrounding opioid misuse, in-
dividuals often seek non-conventional ways to recover, such as using online resources, specifically social media,
and in particular microblogging sites like Twitter. However, social media platforms are often rife with MAT misin-
formation (MATM), posing a serious barrier to recovery. Moreover, the harmful effects of online misinformation
are further exacerbated by the design of the algorithms that drive content curation or recommendation on social
media sites. Yet, research on understanding algorithmic pathways to health-misinformation is rare and that re-
lated to opioid misuse is practically non-existent. This R21 proposal will address this gap by conducting formative
research through the use of robust audit methodologies coupled with rigorously validated machine learning (ML)
techniques, to lay bare an unexplored phenomena in the OUD medication and treatment domain—algorithmically
curated MATM in online social media systems, specifically Twitter—one of the most widely used social media
platforms for sharing and seeking OUD information. The work advances this research agenda by leveraging the
team’s pioneering research in addressing two of the key technical challenges driving this proposal: a) building
computational approaches to audit black-box platform algorithms that curate, recommend, or filter information
viewed by end users; and 2) developing ML techniques that detect pre-existing or emergent online misinforma-
tion. Drawing from advances in algorithmic audit work and PI’s own successful audit study designs, Aim 1 will
build tools and methodologies to audit search and recommendation algorithms for MATM on Twitter across vari-
ous individual user characteristics and algorithmic inputs. The developed methodologies will be generic enough
to be adaptable across other social media platforms. In Aim 2, we will leverage these methodologies to conduct
an exhaustive set of carefully controlled audit experiments on Twitter to investigate it’s search and recommenda-
tion algorithms’ tendency to surface MATM. We will also develop and evaluate ML methods that can automatically
determine whether the collected social media posts contain MATM. Finally, in Aim 3 we will develop a mixed-
methods approach to quantitatively and qualitatively validate our audit results with participants on Twitter who
misuse opioids. The project brings together a multidisciplinary team of computer scientists and a clinical psychol-
ogist, with expertise in social media analytics and recruitment, online algorithmic audits, substance use disorders,
machine learning, and natural language processing. The knowledge we produce will set the stage for future re-
search in early detection of risky OUD behaviors, understanding the role of the online information environment in
exacerbating or preventing OUD risks and launching evidence-based interventions to mitigate such risks.
摘要:阿片类药物滥用已成为美国的一种公共卫生流行病,超过 70% 的人滥用阿片类药物。
患有阿片类药物使用障碍 (OUD) 的人从未接受过任何形式的治疗。接受药物治疗的人更少
成瘾治疗 (MAT)——治疗的黄金标准,也是降低成瘾风险的安全、经济有效的方法
服用过量,同时提高持续康复的可能性。由于阿片类药物滥用带来的耻辱,
个人经常寻求非传统的恢复方式,例如使用在线资源,特别是社交媒体,
特别是 Twitter 等微博网站。然而,社交媒体平台常常充斥着 MAT 误解。
形成(MATM),对恢复构成严重障碍。此外,网上错误信息的有害影响
推动社交内容管理或推荐的算法设计进一步加剧了这一问题
媒体网站。然而,关于理解健康错误信息的算法路径的研究很少,并且重新
与阿片类药物滥用相关的情况实际上不存在。 R21 提案将通过开展形成性工作来解决这一差距
通过使用稳健的审计方法和经过严格验证的机器学习 (ML) 进行研究
技术,以算法的方式揭示 OUD 药物和治疗领域中未经探索的现象
在在线社交媒体系统中策划 MATM,特别是 Twitter——使用最广泛的社交媒体之一
共享和寻找 OUD 信息的平台。这项工作通过利用
团队的开创性研究解决了推动该提案的两个关键技术挑战:a)构建
审计黑盒平台算法的计算方法,这些算法可以策划、推荐或过滤信息
最终用户查看; 2)开发机器学习技术来检测预先存在或新出现的在线错误信息
。借鉴算法审计工作的进步和 PI 自己成功的审计研究设计,目标 1 将
构建工具和方法来审核 Twitter 上 MATM 的跨变量搜索和推荐算法
我们的个人用户特征和算法输入。开发的方法将足够通用
适应其他社交媒体平台。在目标 2 中,我们将利用这些方法来进行
在 Twitter 上进行了一系列详尽的仔细控制的审计实验,以调查其搜索和推荐
化算法呈现 MATM 的趋势。我们还将开发和评估能够自动
确定收集的社交媒体帖子是否包含 MATM。最后,在目标 3 中,我们将开发一个混合-
方法与 Twitter 上的参与者一起定量和定性地验证我们的审计结果
滥用阿片类药物。该项目汇集了一个由计算机科学家和临床心理学组成的多学科团队
ogist 拥有社交媒体分析和招聘、在线算法审计、药物滥用障碍方面的专业知识,
机器学习和自然语言处理。我们产生的知识将为未来的再创造奠定基础
早期发现有风险的 OUD 行为的搜索,了解在线信息环境在
加剧或预防 OUD 风险,并采取基于证据的干预措施来减轻此类风险。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tanushree Mitra其他文献
Tanushree Mitra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 24.42万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 24.42万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 24.42万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 24.42万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 24.42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 24.42万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 24.42万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 24.42万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 24.42万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 24.42万 - 项目类别:
Miscellaneous Programs














{{item.name}}会员




