Identify the heterogeneity and commonality of chronic overlapping pain conditions (COPCs) through phenotypic and genomic perspectives
通过表型和基因组观点识别慢性重叠疼痛病症 (COPC) 的异质性和共性
基本信息
- 批准号:10665773
- 负责人:
- 金额:$ 19.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAlgorithmsAll of Us Research ProgramAmericanAnatomyBioinformaticsBiologicalBiometryCatalogsCharacteristicsChronicClassification SchemeClinicalClinical DataClinical InformaticsCodeCohort StudiesControlled StudyCraniofacial PainDataData ScienceData SetDevelopmentDiagnosisDiagnosticDiseaseElementsEpidemiologyEtiologyEventFunctional disorderFutureGenesGeneticGenomeGenomicsGenotypeGenotype-Tissue Expression ProjectGoalsGraphHeterogeneityInformaticsIrritable Bowel SyndromeKnowledgeMeasurementMedicineMethodsMiningNational Human Genome Research InstituteNatural Language ProcessingNeuroimmuneNeurosecretory SystemsNoiseObservational StudyOntologyOutcomePainPain managementPathway interactionsPatientsPatternPharmaceutical PreparationsPhenotypePopulationPositioning AttributePrevalenceProtocols documentationPublic HealthQuantitative Trait LociRecordsReproducibilityResearchResolutionResourcesRiskSample SizeSemanticsSubgroupSurfaceTaxonomyTemporomandibular Joint DisordersTestingTherapeuticTranslational ResearchUntranslated RNAWorkbiobankchronic painclinical data warehousecomorbiditycostcraniofacialdesigndrug repurposingeffective therapyfunctional genomicsgastrointestinalgenome wide association studygenome-widegenomic datahealth recordinnovationinsightinterdisciplinary approachknowledge basemultiple data sourcesnovelorofacialpatient subsetsphenomepopulation basedprecision medicinestatisticsstressorsuccesssymptomatologytreatment strategy
项目摘要
PROJECT SUMMARY/ABSTRACT
With an estimated prevalence of 20% in American adults and annual costs above $500 million, chronic pains
pose a high toll to public health. Many patients developed chronic overlapping pain conditions (COPCs), where
craniofacial pains like temporomandibular disorder (TMD) represent a unique component that co-occurs
frequently with other chronic pains including irritable bowel syndrome (IBS). Not only do the comorbidities
complicate pain management, but the etiology of COPCs remains unclear. Heterogeneity exists within and
across COPCs, so mechanism-based classification schemes are needed to identify safe and effective therapies
for distinct subgroups of patients. However, existing research surrounding COPC taxonomy has not fully
integrated phenotypic and genotypic data at the population level. Reliance on disease-specific study cohorts
seriously limited the sample size and diversity. On the other hand, informatics and data science have advanced
secondary use of biomedical data, presenting a strong alternative to hypothesis-driven, controlled studies. We
propose to elicit COPC subgroups by mining three distinct population-based clinical datasets and imputing the
biological underpinnings of co-occurring COPCs by using functional genomic knowledge bases. Our approach
consists of two aims: 1) Identify COPC subgroups and other commonly associated phenotypes from rich
longitudinal clinical data and notes, including over one million patients in the Rochester Epidemiology Project.
The clinical datasets will be computationally screened for COPCs and other co-occurring phenotypes based on
diagnosis codes and natural language processing. We will identify statistically significant COPC comorbidities
and progression trajectories using novel and tailored statistics. The discovered trajectories will be clustered into
subgroups using cutting-edge graph clustering algorithms. The patients will be assigned to the best matched
subgroups, for which additional phenotypic characteristics of each group will be determined by least absolute
shrinkage and selection operator. 2) Impute biological underpinnings for comorbid COPCs by integrating
phenotypic, genetic, and genomic data in biobanks and biorepositories. We will conduct genome-wide and
phenome-wide association studies based on the diagnoses and genotypes from the UK Biobank and All of Us
Research Program, leading to identification of additional genotypes that are associated with the COPCs and
beyond those in the NHGRI-EBI GWAS catalog. We will apply our information-theoretic framework to impute the
functional similarity and shared biological mechanisms across COPCs by using GTEx expression quantitative
trait loci data and gene ontology annotations. The findings of shared mechanisms among COPCs will provide
novel insight into the genetic factors, particularly in noncoding regions, and functional linkages that are pivotal to
developing applications such as drug repurposing for COPCs. The two aims corroborate each other across the
genome-phenome boundary to unveil interpretable subgroups that will advance precision medicine for COPCs.
项目摘要/摘要
据估计,慢性疼痛在美国成年人中的患病率为20%,每年的费用超过5亿美元。
对公众健康造成了巨大的损失。许多患者出现慢性重叠疼痛状况(COPC),其中
像颞下颌关节紊乱症(TMD)这样的颅面疼痛是一种共同发生的独特成分
经常伴有其他慢性疼痛,包括肠易激综合征(IBS)。不仅是合并症
疼痛处理复杂,但COPC的病因尚不清楚。和内部存在异质性
因此,需要基于机制的分类方案来确定安全有效的治疗方法
适用于不同的患者亚群。然而,围绕COPC分类的现有研究还没有完全
综合种群一级的表型和遗传型数据。对疾病特异性研究队列的依赖
严重限制了样本量和多样性。另一方面,信息学和数据科学也取得了进步
生物医学数据的二次利用,为假说驱动的对照研究提供了一个强有力的替代方案。我们
建议通过挖掘三个不同的基于总体的临床数据集并将
利用功能基因组知识库研究共生COPC的生物学基础。我们的方法
包括两个目标:1)从RICH中识别COPC亚群和其他共同相关的表型
纵向临床数据和笔记,包括罗切斯特流行病学项目中的100多万名患者。
临床数据集将根据以下条件对COPC和其他共生表型进行计算筛选
诊断代码和自然语言处理。我们将确定有统计学意义的COPC并存
以及使用新颖和量身定制的统计数据的进度轨迹。已发现的轨迹将被聚集到
使用尖端图聚类算法的子组。病人将被分配给最匹配的人
子组,其中每个组的附加表型特征将由最小绝对值法确定
收缩和选择操作符。2)通过整合确定共病COPC的生物学基础
生物库和生物仓库中的表型、遗传和基因组数据。我们将进行全基因组和
基于英国生物库和我们所有人的诊断和基因型别的全组关联研究
研究计划,导致识别与COPC和COPC相关的其他基因类型
超出NHGRI-EBI Gwas目录中的那些。我们将应用我们的信息论框架来归因于
用GTEx表达定量研究COPC之间的功能相似性和共同的生物学机制
性状基因座数据和基因本体论注释。COPC之间共享机制的调查结果将提供
对遗传因素的新见解,特别是在非编码区,以及对
开发用于COPC的药物再利用等应用。这两个目标是相互印证的
基因组-表型组边界揭示可解释的亚群,这将促进COPC的精确医学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jungwei Wilfred Fan其他文献
Jungwei Wilfred Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jungwei Wilfred Fan', 18)}}的其他基金
Identify the heterogeneity and commonality of chronic overlapping pain conditions (COPCs) through phenotypic and genomic perspectives
通过表型和基因组观点识别慢性重叠疼痛病症 (COPC) 的异质性和共性
- 批准号:
10525765 - 财政年份:2022
- 资助金额:
$ 19.37万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 19.37万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 19.37万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 19.37万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 19.37万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 19.37万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 19.37万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 19.37万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 19.37万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 19.37万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 19.37万 - 项目类别:
Continuing Grant














{{item.name}}会员




