New approach for identification pHFO networks to predict epileptogenesis
识别 pHFO 网络以预测癫痫发生的新方法
基本信息
- 批准号:10665791
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AftercareAnimal ModelAnimalsAntiepileptogenicAreaBiological MarkersBrainBrain DiseasesCharacteristicsChronicClinicalClinical ResearchComputational algorithmCouplingDataDevelopmentEarly DiagnosisEffectivenessElectrophysiology (science)ElementsEntropyEpilepsyEpileptogenesisEventExhibitsFutureGoalsGraphHigh Frequency OscillationInterventionIntractable EpilepsyInvestigationKainic AcidKnowledgeLesionMeasuresMethodsModelingNeocortexNetwork-basedNeuronsOutcome StudyPathologicPathologyPatientsPhenotypePopulationPreventionProbabilityProcessPropertyRattusResearchResolutionSeizuresSignal TransductionSiliconSpatial DistributionStatus EpilepticusTechniquesTemporal Lobe EpilepsyTestingTrainingTranslatingUpdatealgorithm developmentbiomaterial compatibilitycomputerized toolsdesigneffectiveness evaluationexperimental studygraph theoryneocorticalnervous system disordernetwork architectureneuralnovelnovel strategiespreventpreventable epilepsysoftware developmentsupport vector machinesurgery outcome
项目摘要
PROJECT SUMMARY
Epilepsy is among the most common serious neurological disorders, and about 40% of epilepsy patients do not
respond to existing treatment. Clinically, the prolonged, refractory epilepsy with negative surgical outcomes is
often associated with distributed epilepsy onset rather than a local epileptogenic zone. Understanding the
epilepsy as a large-scale brain network abnormality enables the development of new treatment options and
research directions. At present, the majority of research related to analysis of the epileptic network has been
focused on the ictal period, while few have been devoted to the analysis of the earlier stages of epileptogenesis
(latent period). Investigating the brain network properties of epileptogenesis is as important and can help
develop antiepileptogenic interventions for epilepsy prevention and cure. Early in our experiments, we
discovered pathological high-frequency oscillations (pHFOs), which are reliable biomarkers of epileptogenesis.
They are generated by clusters of pathologically interconnected neurons (PIN-clusters) and reflect bursts of
population spikes. Recent updates in the animal models of chronic epilepsy evidenced the spatially distributed
pHFO events, which implies the development of large-scale PIN-cluster networks during epileptogenesis. It is
critical to study the network topology and characteristics of PIN-cluster-formed epileptogenic networks in
order to further understand the underlying mechanisms of epileptogenesis.
To fulfill this gap, the present study plan is to explore pHFO-based networks using the Kainic Acid (KA)-
induced status epilepticus (SE) model of epileptogenesis. We hypothesize that epileptogenesis after SE is
dependent upon the formation of large-scale PIN-cluster networks that is expressed by the spatial occurrence
and temporal coupling of pHFOs. Combining the biocompatible, organic–material based neural interface array
(NeuroGrid) with multichannel silicon probes, we aim to identify the spatial and temporal profiles of pHFOs
(Aim1). Using the advanced computational algorithms such as graph theory analysis and Shannon Entropy
(SE), we propose to investigate the causal relationship and characteristics of the pHFO-based epileptogenic
networks (Aim2). The outcome of this study will assess the robustness of novel network-based recording design
and algorithm development. It will also determine whether the pHFO-derived network parameters are a
reliable biomarker of epileptogenesis. The future plans are to translate the pHFO-network concept and
computational tools into the clinical study of epilepsy. This approach may open a new direction to the
prevention of epilepsy development and cure epilepsy.
项目摘要
癫痫是最常见的严重神经系统疾病之一,约40%的癫痫患者不会
对现有治疗作出反应。在临床上,长期的,难治性癫痫与负面的手术结果,
通常与分布性癫痫发作有关,而不是局部致痫区。了解
癫痫作为一种大规模的脑网络异常,使新的治疗选择的发展,
研究方向。目前,大多数与癫痫网络分析相关的研究都是
集中在发作期,而很少有人致力于癫痫发生的早期阶段的分析
(潜伏期)。研究癫痫发生的大脑网络特性同样重要,
开展抗癫痫干预措施,防治癫痫。在实验初期,我们
发现了病理性高频振荡(pHFO),这是癫痫发生的可靠生物标志物。
它们是由病理性相互连接的神经元簇(PIN簇)产生的,反映了神经元的爆发。
人口激增慢性癫痫动物模型的最新进展证明了空间分布
pHFO事件,这意味着癫痫发生过程中大规模PIN簇网络的发展。是
关键是研究网络拓扑结构和特征的PIN簇形成的癫痫网络,
以进一步了解癫痫发生的潜在机制。
为了填补这一空白,本研究计划使用红藻氨酸(KA)探索基于pHFO的网络。
诱发癫痫发生的癫痫持续状态(SE)模型。我们假设SE后的癫痫发生是
这取决于大规模的PIN簇网络的形成,
和pHFO的时间耦合。结合生物相容的、基于有机材料的神经接口阵列
(NeuroGrid)与多通道硅探针,我们的目标是确定pHFOs的空间和时间分布
(目标1)。利用图论分析和香农熵等先进的计算算法
(SE),我们建议调查基于pHFO的致癫痫的因果关系和特征,
网络(Aim2)。本研究的结果将评估新的基于网络的记录设计的鲁棒性
和算法开发。它还将确定pHFO导出的网络参数是否是
癫痫发生的可靠生物标志物。未来的计划是将pHFO网络概念转化为
将计算机工具应用于癫痫的临床研究。这种方法可能会开辟一个新的方向
预防癫痫发展和治疗癫痫。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Intracranial electrophysiological recordings on a swine model of mesial temporal lobe epilepsy.
- DOI:10.3389/fneur.2023.1077702
- 发表时间:2023
- 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lin Li其他文献
Solutions to Kirchhoff equations with combined nonlinearities
具有组合非线性的基尔霍夫方程的解
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0.7
- 作者:
Ling Ding;Lin Li;Jingling Zhang - 通讯作者:
Jingling Zhang
Multifractal analysis of diversity scaling laws in a subtropical forest
亚热带森林多样性尺度规律的多重分形分析
- DOI:
10.1016/j.ecocom.2011.10.004 - 发表时间:
2013-03 - 期刊:
- 影响因子:3.5
- 作者:
Shi-Guang Wei;Lin Li;Zhong-Liang Huang;Wan-Hui Ye;Gui-Quan Gong;Xiao-Yong Zhou;Ju-Yu Lian - 通讯作者:
Ju-Yu Lian
Lin Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lin Li', 18)}}的其他基金
Developing and applying large-scale simulation approach to understand the mechanisms of kinesins' motilities along microtubules
开发和应用大规模模拟方法来了解驱动蛋白沿微管运动的机制
- 批准号:
9983112 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Developing and applying large-scale simulation approach to understand the mechanisms of kinesins' motilities along microtubules
开发和应用大规模模拟方法来了解驱动蛋白沿微管运动的机制
- 批准号:
10459484 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Developing and applying large-scale simulation approach to understand the mechanisms of kinesins' motilities along microtubules
开发和应用大规模模拟方法来了解驱动蛋白沿微管运动的机制
- 批准号:
10261461 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists