Molecular Imaging and Diagnosis of Endometriosis using Mass Spectrometry Technologies

使用质谱技术进行子宫内膜异位症的分子成像和诊断

基本信息

  • 批准号:
    10665085
  • 负责人:
  • 金额:
    $ 17.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT: Endometriosis is a chronic pathologic condition that affects approximately 176 million worldwide, and can cause severe abdominal pain and subfertility. Despite its prevalence, there is currently no widely accepted theory of pathogenesis for endometriosis. Further, there are currently no clinical biomarkers for non- invasive diagnosis as most patients are only diagnosed at the time of exploratory laparoscopy. Thus, application of new molecular technologies to advance the understanding, diagnosis, and intraoperative detection of endometriosis is critically needed to improve patient care and management. Ambient mass spectrometry (MS) techniques offer the chemical specificity and sensitivity to perform rapid and in-depth molecular analysis of unprocessed tissue samples. We propose to conduct a rigorous study applying MS techniques in conjunction with statistical methods to identify, characterize, and validate metabolic and protein markers of endometrial and endometriosis tissues correlated to patient symptoms and disease presentation. Further, we propose to evaluate the performance of ambient MS techniques as tools for rapid diagnosis of endometrial tissues, and in vivo intraoperative disease detection. Combining our team’s expertise in MS, statistics, gynecological surgery, pathology and endometriosis, we are unique poised to successfully carry out the following proposed aims: Aim 1. Characterize metabolic and proteomic markers of endometriosis tissues from endometriosis patients using MS imaging. Characterization of molecular markers that are specific to endometriosis lesions within tissue microenvironment can lead to new understanding of the biological mechanisms governing endometriosis development and pinpoint potential targets for treatment. Using a large cohort of tissues prospectively collected from surgeries, we will use MS imaging and statistical analysis to identify molecular signatures of endometriosis tissues and uncover significant molecular alterations correlated to patient phenotypes and disease presentation within controlled patient subgroups. Aim 2. Define diagnostic markers of endometriosis using endometrial tissues from endometriosis and unaffected patients. New methods for accurate and rapid diagnosis endometriosis are critically needed to advance patient care. We propose to use MS imaging and statistical analyses to identify diagnostic markers of endometriosis using endometrial tissue samples obtained from eutopic endometrium of endometriosis patients, and endometrium tissues from unaffected patients undergoing other benign gynecological procedures, with the goal of identifying molecular markers that could use for diagnosis of endometriosis from tissue biopsies. Aim 3. Test the MasSpec Pen as an intraoperative tool for in vivo endometriosis detection. Complete excision of endometriosis lesions and preservation of healthy adjacent tissues is of utmost importance in the surgical treatment of patients. We propose to conduct a clinical study to evaluate the performance of MasSpec Pen technology for in vivo detection of endometriosis lesions and surgical guidance in laparoscopic procedures.
摘要:子宫内膜异位症是一种慢性病理疾病,全球约有1.76亿患者。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reduced Hemoglobin Signal and Improved Detection of Endogenous Proteins in Blood-Rich Tissues for MALDI Mass Spectrometry Imaging.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Livia Schiavinato Eberlin其他文献

Livia Schiavinato Eberlin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Livia Schiavinato Eberlin', 18)}}的其他基金

Molecular Imaging and Diagnosis of Endometriosis using Mass Spectrometry Technologies
使用质谱技术进行子宫内膜异位症的分子成像和诊断
  • 批准号:
    10219741
  • 财政年份:
    2021
  • 资助金额:
    $ 17.72万
  • 项目类别:
Molecular Imaging and Diagnosis of Endometriosis using Mass Spectrometry Technologies
使用质谱技术进行子宫内膜异位症的分子成像和诊断
  • 批准号:
    10406313
  • 财政年份:
    2021
  • 资助金额:
    $ 17.72万
  • 项目类别:
Development of the MasSpec Pen Technology for Rapid and Accurate Identification of Pediatric Infections
开发用于快速准确识别儿科感染的 MasSpec Pen 技术
  • 批准号:
    10317701
  • 财政年份:
    2021
  • 资助金额:
    $ 17.72万
  • 项目类别:
Advanced Development of the MasSpec Pen for Cancer Diagnosis and Surgical Margin Evaluation
用于癌症诊断和手术边缘评估的 MasSpec Pen 的先进开发
  • 批准号:
    10462343
  • 财政年份:
    2021
  • 资助金额:
    $ 17.72万
  • 项目类别:
Molecular Imaging and Diagnosis of Endometriosis using Mass Spectrometry Technologies
使用质谱技术进行子宫内膜异位症的分子成像和诊断
  • 批准号:
    10470610
  • 财政年份:
    2021
  • 资助金额:
    $ 17.72万
  • 项目类别:
Advanced Development of the MasSpec Pen for Cancer Diagnosis and Surgical Margin Evaluation
用于癌症诊断和手术边缘评估的 MasSpec Pen 的先进开发
  • 批准号:
    9806255
  • 财政年份:
    2019
  • 资助金额:
    $ 17.72万
  • 项目类别:
Mass Spectrometry Imaging for Clinical Diagnosis and Prognosis of Human Cancers
质谱成像用于人类癌症的临床诊断和预后
  • 批准号:
    9191650
  • 财政年份:
    2015
  • 资助金额:
    $ 17.72万
  • 项目类别:
Mass Spectrometry Imaging for Clinical Diagnosis and Prognosis of Human Cancers
质谱成像用于人类癌症的临床诊断和预后
  • 批准号:
    9271167
  • 财政年份:
    2015
  • 资助金额:
    $ 17.72万
  • 项目类别:

相似海外基金

ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
  • 批准号:
    10935820
  • 财政年份:
    2023
  • 资助金额:
    $ 17.72万
  • 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
  • 批准号:
    10932514
  • 财政年份:
    2023
  • 资助金额:
    $ 17.72万
  • 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
  • 批准号:
    10704845
  • 财政年份:
    2023
  • 资助金额:
    $ 17.72万
  • 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
  • 批准号:
    10709085
  • 财政年份:
    2023
  • 资助金额:
    $ 17.72万
  • 项目类别:
Advanced Development of Gemini-DHAP
Gemini-DHAP的高级开发
  • 批准号:
    10760050
  • 财政年份:
    2023
  • 资助金额:
    $ 17.72万
  • 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
  • 批准号:
    10409385
  • 财政年份:
    2022
  • 资助金额:
    $ 17.72万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
  • 批准号:
    10710595
  • 财政年份:
    2022
  • 资助金额:
    $ 17.72万
  • 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
  • 批准号:
    10630975
  • 财政年份:
    2022
  • 资助金额:
    $ 17.72万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
  • 批准号:
    10710588
  • 财政年份:
    2022
  • 资助金额:
    $ 17.72万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
  • 批准号:
    10788051
  • 财政年份:
    2022
  • 资助金额:
    $ 17.72万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了