Towards Precision Medicine for Thoracic Aortic Disease: Defining the Clinical and Genomic Drivers of Bicuspid Aortopathy
迈向胸主动脉疾病的精准医学:定义二尖瓣主动脉病的临床和基因组驱动因素
基本信息
- 批准号:10664513
- 负责人:
- 金额:$ 17.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAneurysmAortaAortic AneurysmAortic DiseasesArtificial IntelligenceArtificial Intelligence platformBicuspidBioinformaticsBirthCardiacCardiovascular DiseasesCardiovascular systemClinicalClinical MedicineCollaborationsComplexCongenital Cardiovascular AbnormalityDataData ScienceDemographic FactorsDependenceDevelopmentDiabetes MellitusDiagnosisDiameterDiseaseDisease OutcomeDisease ProgressionDissectionElectronic Health RecordEpidemiologyFaceFamilyFoundationsFrustrationFundingGeneral PopulationGenerationsGenetic Predisposition to DiseaseGenomeGenomic medicineGenomicsGoalsGuidelinesHealth systemHeritabilityHigh PrevalenceHospital MortalityHypertensionIndividualInvestigationK-Series Research Career ProgramsKnowledgeLeadershipLogistic RegressionsMentorsMethodologyMethodsModelingMorbidity - disease rateOperative Surgical ProceduresOutcomePathogenesisPatient CarePatient riskPatientsPersonsPhenotypePopulationPopulation DatabasePopulation StudyPositioning AttributePrevalencePreventionPreventive treatmentPrincipal InvestigatorProceduresRegression AnalysisResearchResearch PersonnelRiskScienceScientistStatistical MethodsSurgeonTestingThoracic aortaTrainingTranslational ResearchUniversitiesUnnecessary SurgeryUtahVariantaortic valveartificial intelligence methodbicuspid aortic valvecareercareer developmentclinical riskcohortcomorbiditydisorder riskexperiencegenetic linkage analysisgenetic pedigreegenetic variantgenome sequencinghigh riskimprovedimproved outcomeindividual patientinnovationmortalitymultidisciplinarynovelpediatric cardiologistpopulation basedprecision medicinepredictive modelingpreventprofessorprogramsprospectiverisk prediction modelrisk stratificationsexskillsstatisticssurgical risktenure tracktooltranslational scientistwhole genome
项目摘要
PROJECT SUMMARY/ABSTRACT
This is a K08 Mentored Clinical Scientist Research Career Development Award for Jason P. Glotzbach, MD. Dr.
Glotzbach is a promising early career translational research clinician-scientist. He is a cardiac and aortic surgeon
and Assistant Professor of Surgery on the tenure track at the University of Utah. His primary mentor for this
proposal is Dr. Martin Tristani-Firouzi, MD, a pediatric cardiologist and expert in precision medicine and genomics
of cardiovascular disease. This proposal spans five years and includes three Research Aims and four Career
Development Aims.
Bicuspid aortic valve (BAV) is the most common congenital cardiovascular anomaly and is associated with aortic
aneurysm and aortic dissection, a condition defined as BAV aortopathy. Although both BAV and BAV aortopathy
are thought to be highly heritable conditions, the causative clinical factors and genomic variants associated with
development and progression of this disease remain poorly understood. The aim of the current proposal is to
fill this knowledge gap through a three-pronged approach: 1) we will use an innovative statistical method
called Poisson binomial comorbidity discovery to define clinical and demographic variables associated
with BAV aortopathy; 2) we will develop a predictive model for BAV aortopathy risk using a state-of-the-
art artificial intelligence method called probabilistic graphical models; and 3) we will utilize detailed
pedigree-driven whole genome sequencing analysis of multigenerational families with a high prevalence
of BAV aortopathy and patients undergoing surgery for BAV aortopathy to define genetic variants
associated with BAV aortopathy. By combining a clinical risk model with an understanding of the genomic
variants associated with BAV aortopathy, we expect to gain novel understanding of the pathogenesis of this
highly impactful clinical condition. The information produced by this line of investigation has significant promise
to help refine the clinical paradigms for treatment of aortic disease by building a foundation to allow development
of precision medicine tools to predict aortic disease risk at the individual patient level. This line of inquiry, if
successful, will lead to improved clinical outcomes in these complex and heterogenous patients.
Through pursuit of the Research Aims of this proposal, Dr. Glotzbach will develop his expertise with the
fundamental skills of statistics, predictive modeling, epidemiology, bioinformatics, genomic analysis, and
research team leadership that will enable him to build a career as an independent translational investigator.
1
项目摘要/摘要
这是Jason P. Glotzbach,医学博士的K08指导的临床科学家研究职业发展奖。博士
格洛茨巴赫(Glotzbach)是一个有前途的早期职业转化研究临床医生 - 科学家。他是心脏和主动脉外科医生
以及犹他大学任职期间的手术助理教授。他的主要导师
提案是医学博士Martin Tristani-Firouzi博士,儿科心脏病专家兼精密医学和基因组学专家
心血管疾病。该建议跨越了五年,包括三个研究目标和四个职业
发展目的。
双质主动脉瓣(BAV)是最常见的先天性心血管异常,与主动脉有关
动脉瘤和主动脉夹层,一种定义为BAV主动脉病。虽然BAV和BAV主动脉病
被认为是高度可遗传的条件,与
该疾病的发展和进展仍然知之甚少。当前建议的目的是
通过三管齐下的方法填补此知识差距:1)我们将使用创新的统计方法
被称为泊松二项合并症发现,以定义相关的临床和人口统计学变量
患有BAV主动脉疾病; 2)我们将使用最先进的
艺术人工智能方法称为概率图形模型; 3)我们将使用详细的
多代家族的谱系驱动的整个基因组测序分析
BAV主动脉疾病和接受BAV主动脉疾病手术的患者定义遗传变异
与BAV主动脉病有关。通过将临床风险模型与对基因组的了解
与BAV主动瘤相关的变体,我们期望对此发病有新的理解
高度影响力的临床状况。这一调查导致的信息具有巨大的希望
通过建立基础来帮助完善临床范例来治疗主动脉疾病
精确医学工具可预测个别患者水平的主动脉疾病风险。这条询问线,如果
成功的,将导致这些复杂和异质患者的临床结果改善。
通过追求该提案的研究目的,Glotzbach博士将在
统计学,预测建模,流行病学,生物信息学,基因组分析和
研究团队的领导才能使他能够建立独立翻译调查员的职业。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Paul Glotzbach其他文献
Jason Paul Glotzbach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Paul Glotzbach', 18)}}的其他基金
Transcriptional Heterogeneity Individual of Human Adipose Stromal Cells
人类脂肪基质细胞的转录异质性个体
- 批准号:
8070421 - 财政年份:2010
- 资助金额:
$ 17.12万 - 项目类别:
Defining the Transcriptional Heterogeneity of Human Adipose Stromal Cells using S
使用 S 定义人类脂肪基质细胞的转录异质性
- 批准号:
7910603 - 财政年份:2010
- 资助金额:
$ 17.12万 - 项目类别:
相似国自然基金
基于几何形态与生物力学分析预测腹主动脉瘤腔内治疗术后锚定区相关不良事件
- 批准号:82300542
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
核因子КB受体活化因子配体在腹主动脉瘤形成中的作用及机制研究
- 批准号:82370486
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SOX9调控线粒体-内质网细胞器互作参与血管平滑肌细胞衰老与腹主动脉瘤的机制研究
- 批准号:82301780
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PP2A调控内皮细胞EndMT促进腹主动脉瘤发展的机制研究
- 批准号:82370488
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
丙酮酸脱氢酶激酶4调控血管平滑肌细胞表型转换在主动脉瘤/夹层中的作用及机制
- 批准号:82370485
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
2/2 IMPRroving Outcomes in Vascular DisEase - Aortic Dissection (IMPROVE-AD)
2/2 血管疾病的改善结果 - 主动脉夹层 (IMPROVE-AD)
- 批准号:
10663555 - 财政年份:2023
- 资助金额:
$ 17.12万 - 项目类别:
Neural Operator Learning to Predict Aneurysmal Growth and Outcomes
神经算子学习预测动脉瘤的生长和结果
- 批准号:
10636358 - 财政年份:2023
- 资助金额:
$ 17.12万 - 项目类别:
Non-invasive hemodynamic and biomechanic imaging methods for early risk prediction in aortic dissection
用于主动脉夹层早期风险预测的非侵入性血流动力学和生物力学成像方法
- 批准号:
10716472 - 财政年份:2023
- 资助金额:
$ 17.12万 - 项目类别:
1/2 IMPRoving Outcomes in Vascular DisEase - Aortic Dissection (IMPROVE-AD)
1/2 改善血管疾病的结果 - 主动脉夹层 (IMPROVE-AD)
- 批准号:
10663037 - 财政年份:2023
- 资助金额:
$ 17.12万 - 项目类别:
Targeted Mitochondrial Delivery Systems for Vascular Interventions
用于血管干预的靶向线粒体输送系统
- 批准号:
10905155 - 财政年份:2023
- 资助金额:
$ 17.12万 - 项目类别: