Super-resolved multiphoton microscopy with dual output ultrafast laser
具有双输出超快激光的超分辨率多光子显微镜
基本信息
- 批准号:10664267
- 负责人:
- 金额:$ 14.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcousticsAfferent NeuronsAnesthesia proceduresAnimal ModelAxonBackBiomedical ResearchBiotechnologyCapsidCellsCentral Nervous SystemCognitionComplexComputer softwareCorneaDependovirusDevelopmentDimensionsDiseaseDrug DesignDyesElectron MicroscopyEmotionsEngineeringFiberGene DeliveryGoalsImageImage EnhancementImaging DeviceImaging TechniquesIn VitroKnowledge DiscoveryLabelLasersLifeLightLiquid substanceMentorsMicroscopeMicroscopyMusNervous SystemNeuronsNuclear TranslocationOpticsOrganismOutputPatternPenetrationPeripheral Nervous SystemPhysicsPhysiologic pulsePositioning AttributeProcessResolutionResourcesSchwann CellsSensorimotor functionsSensoryShapesSignal TransductionSourceSpecimenSpeedSpinal GangliaStretchingStructureTechniquesTherapeuticThickTimeTissuesVenusViralViral VectorVirionVisualizationWorkadeno-associated viral vectorbiomedical imagingcell typecellular transductioncostdesignexpectationimaging platformimprovedin vivoinsightintravital imaginglenslight microscopymulti-photonmultiphoton microscopynanoscalenervous system disordernervous system imagingnovelopen sourceparticlepermissivenessskillsspatiotemporalsuperresolution imagingtraffickingtwo-photonultra high resolutionuptakevectorvirology
项目摘要
Project Summary/ Abstract
Nervous system disease may yield devastating impact on cognition, emotion, or sensorimotor function. Gene
delivery using adeno-associated virus (AAV) vectors has demonstrated immense potential for treatment of
congenital and acquired diseases impacting the central and peripheral nervous systems. Advancing
mechanistic understanding of vector uptake and trafficking within nervous system cells would inform viral
vector capsid design. Heretofore, visualizing viral vector cellular transduction in vivo has been hampered by a
lack of optimal means for resolving nanoscale particles in thick tissues. Imaging viral particles whose
dimensions are below the ~250 nm diffraction limit resolution of light microscopy is typically achieved using
electron microscopy, a resource-intensive technique incompatible with life. There is a critical need to develop
intravital imaging techniques that enable high-speed and deep nanoscale imaging of living systems. Two-
photon excitation (2PE) microscopy is a powerful technique for intravital imaging of the nervous system that
employs ultrafast near-infrared laser light capable of penetrating deep into tissues. Though the technique
enables intravital imaging of thick tissues, the achievable resolution and image quality of 2PE microscopy is
inadequate for study of nanoscale processes. 2PE microscopy may be paired with stimulated emission
depletion (STED) techniques to enable resolution of nanoscale fluorescent-tagged targets. To enhance
imaging depth and signal-to-background, 2PE may be achieved via spatiotemporal overlap of two ultrafast
lasers of different wavelengths in a process termed non-degenerate 2PE. Heretofore, wide dissemination of
2PE-STED and non-degenerate 2PE microscopy techniques have been hampered by the cost and complexity
associated with synchronization and alignment of two ultrafast laser sources. Herein, we propose to develop
efficient super-resolved multiphoton microscopy approaches to enhance spatiotemporal resolution and imaging
depth within living tissues by employing a single dual-output commercial ultrafast laser. Once developed, we
will employ these novel imaging platforms to study intracellular trafficking of single AAV particles within cells of
the murine nervous system. In Aim 1, the dual-output ultrafast laser will be utilized to achieve 2PE-STED
microscopy via pulsed depletion and employed to image AAV trafficking in cultured Schwann cells and primary
sensory neurons of murine dorsal root ganglia. In Aim 2, the dual-output ultrafast laser will be utilized to
achieve non-degenerate 2PE and paired with a continuous wave depletion beam for deep super-resolution
imaging of AAV trafficking in corneal Schwann cells and sensory neurons in live anesthetized mice. A liquid
lens will be employed to enhance volumetric imaging speed. If successful, this work carries potential to
advance understanding of viral vector transduction of nervous system cells by identifying intracellular trafficking
bottlenecks, while illustrating the potential of super-resolution 2PE microscopy techniques to advance
knowledge discovery in biomedicine.
项目总结/摘要
神经系统疾病可能对认知、情感或感觉运动功能产生破坏性影响。基因
使用腺相关病毒(AAV)载体的递送已经证明了治疗
影响中枢和周围神经系统的先天性和后天性疾病。推进
对神经系统细胞内载体摄取和运输的机制的理解将告知病毒
载体衣壳设计。因此,体内病毒载体细胞转导的可视化受到以下因素的阻碍:
缺乏用于分辨厚组织中的纳米级颗粒的最佳手段。成像病毒颗粒,
光学显微镜的衍射极限分辨率通常使用
电子显微镜,一种与生命不相容的资源密集型技术。迫切需要发展
活体成像技术,能够对生命系统进行高速和深度纳米级成像。二--
光子激发(2 PE)显微术是用于神经系统活体成像的强大技术,
采用能够深入穿透组织的超快近红外激光。虽然技术
能够对厚组织进行活体成像,2 PE显微镜可达到的分辨率和图像质量
不足以研究纳米工艺。2 PE显微镜可以与受激发射配对
耗尽(STED)技术,使纳米级荧光标记的目标的分辨率。加强
成像深度和信号-背景,2 PE可以通过两个超快的时空重叠来实现。
在称为非简并2 PE的过程中使用不同波长的激光器。因此,广泛传播
2 PE-STED和非简并2 PE显微镜技术受到成本和复杂性的阻碍
与两个超快激光源的同步和对准相关。在此,我们建议开发
增强时空分辨率和成像的高效超分辨多光子显微镜方法
通过采用单个双输出商用超快激光器,在活组织内进行深度测量。一旦开发出来,我们
将使用这些新的成像平台来研究单个AAV颗粒在细胞内的细胞内运输,
老鼠的神经系统在目标1中,将利用双输出超快激光实现2 PE-STED
通过脉冲耗尽的显微镜,并用于对培养的雪旺细胞和原代细胞中的AAV运输进行成像。
小鼠背根神经节感觉神经元。在目标2中,双输出超快激光器将用于
实现非简并2 PE,并与连续波耗尽光束配对,用于深度超分辨率
在活的麻醉小鼠中,在角膜雪旺细胞和感觉神经元中的AAV运输的成像。液体
将采用透镜来提高体积成像速度。如果成功,这项工作将有可能
通过识别细胞内运输来进一步理解神经系统细胞的病毒载体转导
瓶颈,同时说明了超分辨率2 PE显微镜技术的潜力,以推进
生物医学知识发现
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivan Coto Hernandez其他文献
Ivan Coto Hernandez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 14.28万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 14.28万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 14.28万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 14.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 14.28万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 14.28万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 14.28万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 14.28万 - 项目类别:
Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 14.28万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 14.28万 - 项目类别:
Discovery Launch Supplement