A translational bioinformatics approach to elucidate and mitigate polypharmacy induced adverse drug reactions
阐明和减轻复方用药引起的药物不良反应的转化生物信息学方法
基本信息
- 批准号:10664024
- 负责人:
- 金额:$ 20.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AchievementAffinityAgeAptitudeArchitectureAreaBasic ScienceBenzodiazepinesBindingBinding ProteinsBioinformaticsBiologicalBiological AssayBuprenorphineCause of DeathCessation of lifeChemical ModelsChronic DiseaseClinicalClinical DataClinical Decision Support SystemsClinical InformaticsClinical SkillsComplementComputer AnalysisComputer softwareCounselingCreativenessDataData SetDatabasesDevelopmentDiagnosisDockingDrug CombinationsDrug InteractionsDrug PrescriptionsDrug usageElectronic Health RecordEnvironmentEthnic OriginEventFDA approvedFinancial HardshipFundingGenderGoalsGrantGraphHealthHealthcare SystemsHigh PrevalenceHumanImpaired cognitionIn VitroIncidenceK-Series Research Career ProgramsKnowledgeKnowledge acquisitionMedicineMentorsMethadoneMethodologyMethodsNaltrexoneOpiate AddictionOpioidOutcomeOverdoseOverdose reductionPathway interactionsPatientsPerformancePharmaceutical PreparationsPharmacologyPolypharmacyPredictive AnalyticsProteinsProtocols documentationQuality of lifeROC CurveRaceRegimenReportingResearchResearch PersonnelResearch ProposalsSamplingSeveritiesSiteSoftware ToolsStatistical Data InterpretationTestingTobacco useTrainingUnited StatesValidationVentilatory Depressionaddictionadverse drug reactioncareercareer developmentclinical decision supportclinical practiceclinically significantcohortcostdeep learningdeep learning modeldesigndrug discoveryexperiencefallsgraph theoryimprovedindividual patientknowledge graphmedication-assisted treatmentnew therapeutic targetnovelnovel therapeuticsopioid epidemicopioid overdoseopioid useopioid use disorderpatient safetypharmacologicpredictive modelingprescription opioidrelapse patientsside effectskillsstandard of caresustained recoverytreatment guidelinesvector
项目摘要
PROJECT SUMMARY
This proposal for a mentored career development award consists of a training and research plan to facilitate Dr.
Zackary Falls' transition to an independent investigator focusing on translational bioinformatics for patient tailored
predictive analytics related to opioid addiction severity. The opioid epidemic is a major concern in the United
States that is exacerbated due to the high prevalence of prescribing two or more drugs to patients living with
opioid use disorder, which increases the likelihood of adverse drug reactions (ADRs) occurring in these patients.
Knowing and predicting drug–drug interactions (DDIs) and resulting ADRs is critical for the safety of patients, but
ADR prediction software tools used in clinical practice have many limitations. Firstly, most DDI databases used
in these software tools are incomplete because they incorporate only pair–wise DDIs. Additionally, most software
tools do not incorporate biological mechanism of action information for the drugs and omit relevant patient–
specific clinical data such as diagnoses, tobacco use, etc. Dr. Falls aims to exceed the efficacy of these software
with the creation of embedded representations for each patient's prescription profile, leveraging both drug–protein
interaction knowledge about the prescription drugs and patient level clinical data pertaining to polypharmacy and
ADRs. The specific aims of this research are to predict and validate novel off–target proteins for opioids and
other commonly co–prescribed medications (Aim 1), extract polypharmacy interactions and ADR relationships
from electronic health records of opioid prescription patients (Aim 2), and design a patient personalized software
that uses deep–learning architecture to predict severe ADRs caused by opioid related polypharmacy interactions
(Aim 3) to be integrated with clinical decision support systems for the benefit of patients and clinicians. The ap-
plicant has detailed a rigorous plan containing three career development goals for gaining the skills and expertise
to accomplish his research aims. These goals include: Goal 1. Gain knowledge in addiction research and phar-
macology as it relates to opioid use, Goal 2. Acquire advanced statistical analysis skills for clinical datasets, and
Goal 3. Increase understanding of graph theory and knowledge graph implementation. The team of mentors and
collaborators that has been assembled by Dr. Falls, including Prof. Ram Samudrala as primary mentor, perfectly
accounts for expertise in research areas that the applicant will be investigating and have knowledge in domains
that complement his own understandings to aid in the career development aspect of this proposal. Dr. Falls has
the aptitude, creativity, and perseverance to become an excellent researcher. The support of this K01, guidance
from his terrific team of mentors and collaborators, and the influence of a rich research environment will enable
him to further develop his skills and knowledge. He will surely accomplish all of his career development goals
and research aims, become a successful independent investigator, and flourish in his career.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zackary Michael Falls其他文献
Zackary Michael Falls的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zackary Michael Falls', 18)}}的其他基金
A translational bioinformatics approach to elucidate and mitigate polypharmacy induced adverse drug reactions
阐明和减轻复方用药引起的药物不良反应的转化生物信息学方法
- 批准号:
10507532 - 财政年份:2022
- 资助金额:
$ 20.93万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 20.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 20.93万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 20.93万 - 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 20.93万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 20.93万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 20.93万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 20.93万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 20.93万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 20.93万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 20.93万 - 项目类别:
Continuing Grant














{{item.name}}会员




