Using Large Electronic Health Records and Advanced Analytics to Develop Predictive Frailty Trajectories in Patients with Heart Failure
使用大型电子健康记录和高级分析来开发心力衰竭患者的预测衰弱轨迹
基本信息
- 批准号:10630281
- 负责人:
- 金额:$ 14.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:Accident and Emergency departmentActivities of Daily LivingAdmission activityAdultAffectAgingAmericanAwardBig DataBiological ModelsCessation of lifeChronic DiseaseClinicalClinical DataClinical InformaticsClinical InvestigatorClinical ResearchCodeComplexComputer ModelsCongestive Heart FailureConsensusDataData CollectionData ScienceData ScientistData SetDatabasesDecision AidDecision MakingDependenceDetectionDiagnosisDiseaseEarly InterventionEffectivenessElderlyElectronic Health RecordEnvironmentFacultyFoundationsFrail ElderlyFutureGoalsGuidelinesHealthHealth Care CostsHealth StatusHeart failureHospitalizationIndividualInternationalInterventionLaboratoriesLength of StayLinkMachine LearningMeasuresMedicareMedicare claimMedicineMentorsMethodsModelingNatural Language ProcessingOlder PopulationOutcomeOutpatientsPatient CarePatientsPatternPhysiologicalPopulationPredictive ValuePrevalenceProceduresQuality of CareReadingRecommendationRecordsResearchResearch Project GrantsRiskSafetyScientistSeriesSourceStructureSurvival AnalysisSymptomsSyndromeTechniquesTestingTextTimeTrainingadvanced analyticsadverse outcomeanalytical methodcareercareer developmentclinical careclinical decision supportclinical decision-makingclinical practicecollegedata warehousedeep neural networkexperiencefrailtyfunctional disabilityfunctional statushigh riskhospital readmissionindexingindividual variationinnovationmembermortalitymortality riskmultidisciplinarynovelpoint of carepoor health outcomepredictive modelingprognostic valuerandom forestroutine carescreeningsignal processingskillsstressorsupport toolstool
项目摘要
Candidate objective: My objective for this award is to become an independent quantitative scientist in analytical
clinical research through structured training and mentored research experience. My goal is to become an
academic leader and developer of advanced predictive models of health trajectories using electronic health
records (EHR). Training objectives: I seek to sharpen my skill set as a clinical quantitative scientist using clinical
informatics, EHR data warehouses, and advanced computational models. I will use the protected time provided
by this award to gain proficiency in patient-clinician interactions, clinical informatics, natural language processing,
and advanced survival analysis to accomplish my research aims. Background: Frailty is a complex clinical
syndrome associated with aging and chronic illness. It decreases physiological reserves and increases
vulnerability to stressors. The prevalence of frailty in patients with heart failure is 74%. The interplay of frailty and
heart failure increases the risk for death, prolonged hospital stays, and functional dependence. One conceptual
framework to operationalize frailty is accumulation of deficits: the frailty index (FI). The FI provides a risk score
based on the assumption that the more ailments a patient has, the higher the risk of adverse outcomes, including
mortality. Prior FI models have not been used in routine clinical practice due to the following limitations:
insufficient number and range of clinical variables, lack of personalized deficit detection, use of data not
commonly found in EHRs, insufficient use of longitudinal analytical models including survival analysis
techniques, and the reduction of FI to a cross-sectional health status rather than a health trajectory. Research
Aim: The overarching goal of this application is to develop a frailty trajectory (FT) for heart failure patients that
provides information integrating prior functional impairment, current functional status, and future risk of mortality.
In Aim 1, we will develop a novel cross-sectional FI that uses the full breadth of outpatient EHR data and
innovative machine learning data science methods to predict mortality. In Aim 2, we will use serial cross-sectional
FIs to build FTs and identify clusters of individuals following a similar progression of frailty over time. In Aim 3,
we will compare the prognostic value of cross-sectional FI versus FT. The VA national EHR offers the ideal
context for this study, as it provides longitudinal data since 1999 and can link to administrative data from non-
VA sources, including linked Medicare databases. Mentoring & environment: A multidisciplinary mentoring
team will supervise my training and will oversee my mentored research projects, formal coursework, directed
reading, and career development. The proposed activities will provide a foundation for transitioning to an
independent quantitative data scientist developing clinical decision aids to guide patient care. Baylor College of
Medicine and the Center for Innovations in Quality, Effectiveness, and Safety have a national reputation of
mentoring and supporting junior faculty members from diverse academic backgrounds to independent careers
as clinical-investigators.
候选目标:我的目标是成为一名独立的定量科学家,在分析
通过结构化培训和指导研究经验进行临床研究。我的目标是成为
使用电子健康的健康轨迹的先进预测模型的学术领导者和开发者
记录(EHR)。培训目标:我寻求提高我的技能,作为一个临床定量科学家使用临床
信息学、EHR数据仓库和高级计算模型。我会利用提供的受保护时间
通过这个奖项,以获得熟练的病人与临床医生的互动,临床信息学,自然语言处理,
和先进的生存分析来实现我的研究目标。背景:虚弱是一种复杂的临床
与衰老和慢性病有关的综合征。它会减少生理储备,
对压力源的脆弱性心力衰竭患者虚弱的患病率为74%。脆弱和
心力衰竭增加了死亡、延长住院时间和功能依赖的风险。一个概念
一个可操作的框架是缺陷的积累:脆弱指数(FI)。FI提供风险评分
基于这样的假设,即患者患有的疾病越多,不良后果的风险就越高,包括
mortality.由于以下局限性,之前的FI模型尚未用于常规临床实践:
临床变量的数量和范围不足,缺乏个性化的缺陷检测,数据的使用不
在EHR中常见,纵向分析模型(包括生存分析)的使用不足
技术,并减少FI的横截面健康状况,而不是健康轨迹。研究
目的:本应用程序的首要目标是为心力衰竭患者开发一个虚弱轨迹(FT),
提供整合既往功能损害、当前功能状态和未来死亡风险的信息。
在目标1中,我们将开发一种新的横截面FI,它使用门诊EHR数据的全部广度,
创新的机器学习数据科学方法来预测死亡率。在目标2中,我们将使用连续横截面
金融机构建立FT和识别集群的个人后,随着时间的推移,类似的进展脆弱。在目标3中,
我们将比较横截面FI与FT的预后价值。VA国家EHR提供了理想的
这项研究的背景,因为它提供了自1999年以来的纵向数据,并可以链接到非
VA来源,包括链接的医疗保险数据库。指导与环境:多学科指导
团队将监督我的培训,并监督我指导的研究项目、正式课程作业、指导
阅读和职业发展。拟议的活动将为过渡到
独立的定量数据科学家开发临床决策辅助工具,以指导患者护理。Baylor College of
医学和质量、有效性和安全性创新中心在全国享有盛誉,
指导和支持来自不同学术背景的初级教师独立职业
作为临床研究者。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Implementation of automated early warning decision support to detect acute decompensation in the emergency department improves hospital mortality.
- DOI:10.1136/bmjoq-2021-001653
- 发表时间:2022-04
- 期刊:
- 影响因子:1.4
- 作者:Howard C;Amspoker AB;Morgan CK;Kuo D;Esquivel A;Rosen T;Razjouyan J;Siddique MA;Herlihy JP;Naik AD
- 通讯作者:Naik AD
Smoking Status and Factors associated with COVID-19 In-Hospital Mortality among US Veterans.
- DOI:10.1093/ntr/ntab223
- 发表时间:2022-03-26
- 期刊:
- 影响因子:0
- 作者:Razjouyan J;Helmer DA;Lynch KE;Hanania NA;Klotman PE;Sharafkhaneh A;Amos CI
- 通讯作者:Amos CI
Elevated Risk of Chronic Respiratory Conditions within 60 Days of COVID-19 Hospitalization in Veterans.
- DOI:10.3390/healthcare10020300
- 发表时间:2022-02-04
- 期刊:
- 影响因子:0
- 作者:Park C;Razjouyan J;Hanania NA;Helmer DA;Naik AD;Lynch KE;Amos CI;Sharafkhaneh A
- 通讯作者:Sharafkhaneh A
Inflammatory Biomarkers Differ among Hospitalized Veterans Infected with Alpha, Delta, and Omicron SARS-CoV-2 Variants.
- DOI:10.3390/ijerph20042987
- 发表时间:2023-02-08
- 期刊:
- 影响因子:0
- 作者:Park C;Tavakoli-Tabasi S;Sharafkhaneh A;Seligman BJ;Hicken B;Amos CI;Chou A;Razjouyan J
- 通讯作者:Razjouyan J
Assessing Smoking Status and Risk of SARS-CoV-2 Infection: A Machine Learning Approach among Veterans.
- DOI:10.3390/healthcare10071244
- 发表时间:2022-07-04
- 期刊:
- 影响因子:2.8
- 作者:Djotsa, Alice B. S. Nono;Helmer, Drew A.;Park, Catherine;Lynch, Kristine E.;Sharafkhaneh, Amir;Naik, Aanand D.;Razjouyan, Javad;Amos, Christopher, I
- 通讯作者:Amos, Christopher, I
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Javad Razjouyan其他文献
Javad Razjouyan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Javad Razjouyan', 18)}}的其他基金
Using Large Electronic Health Records and Advanced Analytics to Develop Predictive Frailty Trajectories in Patients with Heart Failure
使用大型电子健康记录和高级分析来开发心力衰竭患者的预测衰弱轨迹
- 批准号:
10447015 - 财政年份:2020
- 资助金额:
$ 14.39万 - 项目类别:
Using Large Electronic Health Records and Advanced Analytics to Develop Predictive Frailty Trajectories in Patients with Heart Failure
使用大型电子健康记录和高级分析来开发心力衰竭患者的预测衰弱轨迹
- 批准号:
10199037 - 财政年份:2020
- 资助金额:
$ 14.39万 - 项目类别:
相似海外基金
Determining 4-Dimensional Foot Loading Profiles of Healthy Adults across Activities of Daily Living
确定健康成年人日常生活活动的 4 维足部负荷曲线
- 批准号:
2473795 - 财政年份:2024
- 资助金额:
$ 14.39万 - 项目类别:
Studentship
Developing a trunk function assessment for hemiplegics. -For improving activities of daily living-
开发偏瘫患者的躯干功能评估。
- 批准号:
23K10540 - 财政年份:2023
- 资助金额:
$ 14.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Relation with the activities of daily living and the subjective values among people with social withdrawal
社交退缩者日常生活活动与主观价值观的关系
- 批准号:
23K16596 - 财政年份:2023
- 资助金额:
$ 14.39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CRII: RI: Understanding Activities of Daily Living in Indoor Scenarios
CRII:RI:了解室内场景中的日常生活活动
- 批准号:
2245652 - 财政年份:2023
- 资助金额:
$ 14.39万 - 项目类别:
Standard Grant
Association between Nursing Care and Prognosis and Activities of Daily Living in Acute Stroke patients by using Big Data.
利用大数据研究急性脑卒中患者的护理与预后和日常生活活动的关系。
- 批准号:
23K16412 - 财政年份:2023
- 资助金额:
$ 14.39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Sources of vulnerability among those using homecare despite having no limitations in Activities of Daily Living. An intersectionality analysis
尽管日常生活活动没有限制,但使用家庭护理的人的脆弱性来源。
- 批准号:
499112 - 财政年份:2023
- 资助金额:
$ 14.39万 - 项目类别:
Operating Grants
Synergizing home health rehabilitation therapy to optimize patients’ activities of daily living
协同家庭健康康复治疗,优化患者的日常生活活动
- 批准号:
10429480 - 财政年份:2022
- 资助金额:
$ 14.39万 - 项目类别:
Effects of a model of nurses-occupational therapists collaborative practice on activities of daily living in elderly patients
护士-职业治疗师合作实践模式对老年患者日常生活活动的影响
- 批准号:
22K17540 - 财政年份:2022
- 资助金额:
$ 14.39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Assessing a Novel Virtual Environment that Primes Individuals Living with AD/ADRD to Accomplish Activities of Daily Living.
评估一种新颖的虚拟环境,该环境可以帮助 AD/ADRD 患者完成日常生活活动。
- 批准号:
10668160 - 财政年份:2022
- 资助金额:
$ 14.39万 - 项目类别:
Synergizing home health rehabilitation therapy to optimize patients’ activities of daily living
协同家庭健康康复治疗,优化患者的日常生活活动
- 批准号:
10621820 - 财政年份:2022
- 资助金额:
$ 14.39万 - 项目类别: