Quantification of combinatorial epigenetic modifications using defined nucleosome standards
使用定义的核小体标准对组合表观遗传修饰进行定量
基本信息
- 批准号:10630256
- 负责人:
- 金额:$ 102.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAntibodiesAutomationBindingBiological AssayCancerousCell physiologyCellsChIP-seqChromatinClinicalClinical ResearchCodeComplexCytolysisDNADNA MethylationDataDetectionDevelopmentDiseaseDoseDrug TargetingEpigenetic ProcessGenesGenetic TranscriptionGenomicsHistonesHumanHuman PathologyIn SituIndividualLanguageLiteratureMalignant NeoplasmsMarketingMeasuresMethodsModificationMolecularMolecular ConformationNucleosomesPerformancePharmaceutical PreparationsPharmacologic SubstancePharmacotherapyPhasePlasmaPost-Translational Protein ProcessingPreparationProtocols documentationReagentRecombinantsRecoveryRegulationResearchSamplingServicesSite-Directed MutagenesisSpecificityTailTestingTimeValidationWestern BlottingWorkassay developmentbiomarker developmentbiomarker discoverycancer cellchromatin modificationcombinatorialcommercial launchcostdetection limitdrug developmentdrug discoveryepigenetic druggenome-widegenomic signaturehistone modificationinnovationliquid biopsynovelnovel markerresponsestability testingtool
项目摘要
PROJECT SUMMARY
Post-translational modification of histone tails (histone PTMs) and DNA methylation (DNAme) on
nucleosomes form a sophisticated molecular code that regulates gene transcription. Aberrant regulation of these
chromatin modifications is associated with a vast array of human pathologies. While the majority of work in the
field has focused on signatures of individual modifications, combinations of histone PTMs and/or DNAme can
be more specific and informative than single marks alone. For instance, although healthy cells and cancerous
cells both have H3K27me3 and DNAme distributed genome-wide, the co-localization of these two modifications
occurs uniquely in cancer cells. However, existing tools to measure global levels of chromatin modifications are
low-throughput, display low sensitivity, and are unable to measure combinatorial modifications (e.g. immunoblot).
The development of assays that overcome these limitations and are compatible with multiple sample types
(including cellular samples or plasma [for detection of circulating nucleosomes, i.e. liquid biopsy]) will make the
study of chromatin modifications widely accessible for academic, clinical, and pharmaceutical research.
Here, EpiCypher will develop QuantiNucTM assays, a breakthrough epigenetics platform to quantify single
and combinatorial chromatin modifications directly on nucleosomes from cells or plasma samples. The
innovation of this proposal includes the a) application of designer nucleosomes (dNucs) to systematically identify
top-performing detection reagents and to serve as quantitative assay standards, b) development of recombinant
EpiSensors for unbiased detection of DNA and DNAme, and c) development of a proprietary targeted sample
processing method for high-throughput cell-based assays. Overall, this platform will provide a quantitative, low-
cost, and scalable approach to leverage analysis of chromatin modifications (i.e. histone PTMs and/or DNAme)
for chromatin research, drug development, and novel biomarker discovery. In Phase I, we developed a
QuantiNuc assay targeting combinatorial H3K4me3+H3K27ac, PTMs that are co-enriched at actively expressed
genes. We validated the specificity and performance of this QuantiNuc assay by establishing key analytical
parameters and applying the assay to quantify levels of H3K4me3+H3K27ac nucleosomes from human plasma
samples. In Phase II, we will develop new QuantiNuc assays to measure other high-value single and
combinatorial chromatin modifications and further validate these assays for use with human plasma samples
(i.e. liquid biopsy). In addition, we will develop a novel targeted sample processing method for cell-based
QuantiNuc assays, which will streamline the process of cell lysis and chromatin fragmentation to deliver a high-
throughput, low-cost approach for clinical research. Finally, we will prepare for commercial launch of QuantiNuc
assays by assembling beta-kits and performing internal and external validation testing of both liquid biopsy and
cell-based assays, which will be used to develop reliable assay protocols and product literature. Market
availability of these assays will transform biomarker discovery and accelerate epigenetic drug development.
项目摘要
组蛋白尾的翻译后修饰(组蛋白PTM)和DNA甲基化(DNAme)在
核小体形成调节基因转录的复杂分子密码。这些异常调节
染色质修饰与大量的人类病理学有关。虽然大多数工作在
该领域已经集中于个体修饰的特征,组蛋白PTM和/或DNAme的组合可以
比单独的单个标记更具体和信息量更大。例如,虽然健康的细胞和癌细胞
细胞都有H3 K27 me 3和DNAme分布在全基因组,这两种修饰的共定位
只发生在癌细胞中。然而,测量染色质修饰的全局水平的现有工具是
低通量,显示低灵敏度,并且不能测量组合修饰(例如免疫印迹)。
开发能够克服这些限制并与多种样品类型兼容的检测方法
(包括细胞样本或血浆[用于检测循环核小体,即液体活检])将使
染色质修饰的研究广泛用于学术,临床和药学研究。
在这里,EpiCypher将开发QuantiNucTM检测,这是一个突破性的表观遗传学平台,
和直接在来自细胞或血浆样品的核小体上的组合染色质修饰。的
该提案的创新包括a)应用设计者核小体(dNucs)系统地识别
性能最好的检测试剂并用作定量测定标准,B)开发重组
EpiSensors用于无偏检测DNA和DNAme,以及c)开发专有的靶向样品
用于高通量基于细胞的测定的处理方法。总的来说,这个平台将提供一个定量的,低-
利用染色质修饰(即组蛋白PTM和/或DNAme)分析的成本和可扩展方法
用于染色质研究、药物开发和新型生物标志物发现。在第一阶段,我们开发了一个
靶向组合H3 K4 me 3 + H3 K27 ac的QuantiNuc测定,在活性表达时共富集PTM
基因.我们通过建立关键的分析方法,验证了该QuantiNuc检测的特异性和性能。
参数和应用测定来定量来自人血浆的H3 K4 me 3 + H3 K27 ac核小体的水平
样品在第二阶段,我们将开发新的QuantiNuc检测试剂盒,以测量其他高价值的单一和
组合染色质修饰并进一步验证这些测定法用于人血浆样品
(i.e.液体活组织检查)。此外,我们将开发一种新的靶向样品处理方法,用于基于细胞的
QuantiNuc检测,它将简化细胞裂解和染色质片段化的过程,以提供高水平的
高通量、低成本的临床研究方法。最后,我们将为QuantiNuc的商业发布做准备
通过组装β试剂盒并对液体活检和
基于细胞的测定,将用于开发可靠的测定方案和产品文献。市场
这些分析的可用性将改变生物标志物的发现并加速表观遗传药物的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea Lynn Johnstone其他文献
Andrea Lynn Johnstone的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrea Lynn Johnstone', 18)}}的其他基金
Development of ultra-efficient antibodies for single cell mapping applications
开发用于单细胞作图应用的超高效抗体
- 批准号:
10601458 - 财政年份:2023
- 资助金额:
$ 102.45万 - 项目类别:
Development of a high-throughput epigenomic mapping platform to molecularly phenotype Crohn's disease
开发克罗恩病分子表型的高通量表观基因组作图平台
- 批准号:
10683287 - 财政年份:2022
- 资助金额:
$ 102.45万 - 项目类别:
Development of a high-throughput epigenomic mapping platform to molecularly phenotype Crohn's disease
开发克罗恩病分子表型的高通量表观基因组作图平台
- 批准号:
10384457 - 财政年份:2021
- 资助金额:
$ 102.45万 - 项目类别:
Quantification of combinatorial epigenetic modifications using defined nucleosome standards
使用定义的核小体标准对组合表观遗传修饰进行定量
- 批准号:
10481109 - 财政年份:2019
- 资助金额:
$ 102.45万 - 项目类别:
Rapid quantification of nuclear citrullination in human neutrophils
快速定量人中性粒细胞核瓜氨酸化
- 批准号:
10331838 - 财政年份:2018
- 资助金额:
$ 102.45万 - 项目类别:
Rapid quantification of nuclear citrullination in human neutrophils
快速定量人中性粒细胞核瓜氨酸化
- 批准号:
9911359 - 财政年份:2018
- 资助金额:
$ 102.45万 - 项目类别:
Mechanisms Underlying Inhibition of Regeneration in CNS Neurons
中枢神经系统神经元再生抑制的机制
- 批准号:
7662365 - 财政年份:2008
- 资助金额:
$ 102.45万 - 项目类别:
Mechanisms Underlying Inhibition of Regeneration in CNS Neurons
中枢神经系统神经元再生抑制的机制
- 批准号:
7545241 - 财政年份:2008
- 资助金额:
$ 102.45万 - 项目类别:
Mechanisms Underlying Inhibition of Regeneration in CNS Neurons
中枢神经系统神经元再生抑制的机制
- 批准号:
7888145 - 财政年份:2008
- 资助金额:
$ 102.45万 - 项目类别:
相似海外基金
University of Aberdeen and Vertebrate Antibodies Limited KTP 23_24 R1
阿伯丁大学和脊椎动物抗体有限公司 KTP 23_24 R1
- 批准号:
10073243 - 财政年份:2024
- 资助金额:
$ 102.45万 - 项目类别:
Knowledge Transfer Partnership
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
- 批准号:
10752129 - 财政年份:2024
- 资助金额:
$ 102.45万 - 项目类别:
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
- 批准号:
2339201 - 财政年份:2024
- 资助金额:
$ 102.45万 - 项目类别:
Continuing Grant
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
- 批准号:
MR/Y008693/1 - 财政年份:2024
- 资助金额:
$ 102.45万 - 项目类别:
Research Grant
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
- 批准号:
23K14783 - 财政年份:2023
- 资助金额:
$ 102.45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
- 批准号:
23KJ0394 - 财政年份:2023
- 资助金额:
$ 102.45万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Developing first-in-class aggregation-specific antibodies for a severe genetic neurological disease
开发针对严重遗传神经系统疾病的一流聚集特异性抗体
- 批准号:
10076445 - 财政年份:2023
- 资助金额:
$ 102.45万 - 项目类别:
Grant for R&D
PLA2G2D Antibodies for Cancer Immunotherapy
用于癌症免疫治疗的 PLA2G2D 抗体
- 批准号:
10699504 - 财政年份:2023
- 资助金额:
$ 102.45万 - 项目类别:
Genetic adjuvants to elicit neutralizing antibodies against HIV
基因佐剂可引发抗艾滋病毒中和抗体
- 批准号:
10491642 - 财政年份:2023
- 资助金额:
$ 102.45万 - 项目类别:
Novel Immunogens to Elicit Broadly Cross-reactive Antibodies That Target the Hemagglutinin Head Trimer Interface
新型免疫原可引发针对血凝素头三聚体界面的广泛交叉反应抗体
- 批准号:
10782567 - 财政年份:2023
- 资助金额:
$ 102.45万 - 项目类别: