DNA transposons and alternative pre-mRNA splicing.
DNA 转座子和选择性前 mRNA 剪接。
基本信息
- 批准号:10630834
- 负责人:
- 金额:$ 70.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:5&apos Splice SiteAffectAlternative SplicingAmyotrophic Lateral SclerosisAnimalsBehaviorBindingBinding SitesBiological MarkersCellsComplexCourtshipCryoelectron MicroscopyDNADNA Binding DomainDNA Transposable ElementsDNA TransposonsDefectDiseaseDrosophila genusElementsExhibitsFamilyGene ExpressionGene MutationGenesGenomeGenomicsGuanosine TriphosphateHealthHumanHuman GenomeIntronsLinkMalignant NeoplasmsMobile Genetic ElementsMusN-terminalNeurodegenerative DisordersNeuronsOrganismPathway interactionsPatternPlayPoly APolyadenylationPrimatesProcessProtein IsoformsProtein Structure InitiativeProteinsProteomicsRNARNA BindingRNA SplicingRNA-Binding ProteinsReactionRodentRoleSomatic MutationSpliceosomesSplit GenesStructureTissuesTranscriptional Silencer ElementsTransposaseU1 Small Nuclear RibonucleoproteinUnited States National Institutes of HealthWorkXenopusZebrafishcell typecofactorhuman diseasehuman embryonic stem cellinsightmRNA Precursormalemembermutantprematuretranscriptome
项目摘要
NIH R35 GM118121; DNA transposons and alternative pre-mRNA splicing. D. Rio – PI.
PROJECT SUMMARY / ABSTRACT
DNA transposons and alternative pre-mRNA splicing. D. Rio – PI
Mobile genetic elements or transposons are found in the genomes of all organisms. These
elements can move via DNA or RNA intermediates. About 50% of the human genome is made up of
transposable elements with ~ 2.7% corresponding to DNA-based transposons. Many of these
putative transposons or transposase-related genes are uncharacterized. Our previous studies have
focused on the P element family of DNA transposons in Drosophila. P element transposase functions
as a tetramer, using GTP as a cofactor for transposition. N-terminal domain of the transposase
corresponds to a C2CH THAP DNA binding domain, which is a member of a prevalent family of DNA
binding domains found exclusively in animal genomes. One THAP gene, called THAP9, is
homologous to the Drosophila P element transposase and is present in primates, Xenopus, zebrafish
and Ciona, but is absent from rodents. Recent work from our lab has shown that the human and
zebrafish THAP9 genes can mobilize the Drosophila and zebrafish P element transposons in human
and Drosophila cells. We have also used cryo-EM to solve the structure of the P element
transposase strand transfer complex. This proposal is focused on understanding what role the human
THAP9 gene may play in human embryonic stem cells and the reaction pathway that the Drosophila
P element transposase protein uses to recognize and assemble with the transposon ends, donor
DNA, target DNA and GTP/Mg2+ to form an active protein-DNA complex. These studies are aimed at
gaining mechanistic insights.
Alternative pre-mRNA splicing is an important mechanism for regulating gene expression in
metazoans and is a conduit through which genomic sequence is transferred to proteomic information.
Most eukaryotic genes are split and have the potential for alternative splicing, dramatically increasing
proteomic diversity. Many human and mouse disease gene mutations affect the splicing process. in
fact, somatic mutations in splicing factor and spliceosomal genes have been linked to human
diseases, such as cancer and the neurodegenerative disease amyotrophic lateral sclerosis (ALS).
Our previous work has focused on characterization of the tissue-specific Drosophila P element pre-
mRNA exonic splicing silencer element. Recent work from our group has focused on how the action
of the RNA binding proteins, PSI and hrp48 and the human RNA binding splicing factors hnRNPA1
and DDX5. We are using this information to identify new Drosophila cellular splicing silencer elements
that are controlled by PSI and hrp48. We are also analyzing mutant forms of hnRNPA1 that are
linked to ALS to find splicing pattern defects that could be used as biomarkers for the disease or
provide clues to have neurons are dying in the disease. Splicing silencers are a major type of RNA
control element generating tissue- or cell type-specific alternative splicing patterns. The PSI protein
also interacts with U1 snRNP and PSI mutant Drosophila strains that abolish this interaction exhibit
male courtship behavior defects and altered pre-mRNA splicing of the Drosophila male-specific
fruitless pre-mRNA isoforms. We want to investigate how the PSI protein controls fruitless pre-mRNA
splicing and how it controls binding of U1 snRNP on the Drosophila transcriptome. U1 snRNP has
distinct roles in U1 snRNP binding sites in PCPA (premature cleavage and polyadenylation), splicing
at intron 5' splice sites, at cryptic 5' splice sites and at splicing silencers (from our work).
美国国立卫生研究院 R35 GM118121; DNA 转座子和选择性前 mRNA 剪接。 D. Rio – PI。
项目概要/摘要
DNA 转座子和选择性前 mRNA 剪接。 D. Rio – PI
在所有生物体的基因组中都发现了移动遗传元件或转座子。这些
元素可以通过 DNA 或 RNA 中间体移动。人类基因组的大约 50% 由
转座元件约 2.7% 对应于基于 DNA 的转座子。其中许多
推定的转座子或转座酶相关基因尚未表征。我们之前的研究有
重点关注果蝇 DNA 转座子的 P 元件家族。 P元件转座酶功能
作为四聚体,使用 GTP 作为转座的辅助因子。转座酶的 N 端结构域
对应于 C2CH THAP DNA 结合域,它是常见 DNA 家族的成员
仅在动物基因组中发现的结合域。一种称为 THAP9 的 THAP 基因是
与果蝇 P 元件转座酶同源,存在于灵长类动物、非洲爪蟾、斑马鱼中
和 Ciona,但啮齿动物中不存在。我们实验室最近的工作表明,人类和
斑马鱼THAP9基因可以调动人类果蝇和斑马鱼P元件转座子
和果蝇细胞。我们还使用冷冻电镜来解析 P 元素的结构
转座酶链转移复合物。该提案的重点是了解人类的角色
THAP9基因可能在人胚胎干细胞中发挥的作用及果蝇的反应途径
P元件转座酶蛋白用于识别并与转座子末端、供体进行组装
DNA、靶标 DNA 和 GTP/Mg2+ 形成活性蛋白质-DNA 复合物。这些研究旨在
获得机械的见解。
选择性前mRNA剪接是调节基因表达的重要机制
后生动物,是基因组序列转移到蛋白质组信息的管道。
大多数真核基因都是分裂的,并且具有选择性剪接的潜力,从而显着增加
蛋白质组多样性。许多人类和小鼠疾病基因突变都会影响剪接过程。在
事实上,剪接因子和剪接体基因的体细胞突变已与人类
疾病,例如癌症和神经退行性疾病肌萎缩侧索硬化症 (ALS)。
我们之前的工作重点是组织特异性果蝇 P 元件预表征
mRNA 外显子剪接沉默元件。我们小组最近的工作重点是如何采取行动
RNA 结合蛋白 PSI 和 hrp48 以及人类 RNA 结合剪接因子 hnRNPA1
和DDX5。我们正在利用这些信息来识别新的果蝇细胞剪接沉默元件
由 PSI 和 hrp48 控制。我们还分析了 hnRNPA1 的突变形式
与 ALS 相关联以发现剪接模式缺陷,这些缺陷可用作该疾病的生物标志物或
提供神经元在疾病中死亡的线索。剪接沉默子是RNA的主要类型
控制元件产生组织或细胞类型特异性的选择性剪接模式。 PSI蛋白
还与 U1 snRNP 和 PSI 突变果蝇菌株相互作用,消除了这种相互作用
雄性求爱行为缺陷和果蝇雄性特异性的前mRNA剪接改变
无果的前 mRNA 亚型。我们想研究 PSI 蛋白如何控制无结果的前 mRNA
剪接及其如何控制 U1 snRNP 在果蝇转录组上的结合。 U1 snRNP 有
U1 snRNP 结合位点在 PCPA(过早切割和多聚腺苷酸化)、剪接中的不同作用
在内含子 5' 剪接位点、隐秘 5' 剪接位点和剪接消音器处(来自我们的工作)。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Widespread intron retention impairs protein homeostasis in C9orf72 ALS brains.
- DOI:10.1101/gr.265298.120
- 发表时间:2020-12
- 期刊:
- 影响因子:7
- 作者:Wang Q;Conlon EG;Manley JL;Rio DC
- 通讯作者:Rio DC
Striking circadian neuron diversity and cycling of Drosophila alternative splicing.
- DOI:10.7554/elife.35618
- 发表时间:2018-06-04
- 期刊:
- 影响因子:7.7
- 作者:Wang Q;Abruzzi KC;Rosbash M;Rio DC
- 通讯作者:Rio DC
Mechanism and regulation of P element transposition.
- DOI:10.1098/rsob.200244
- 发表时间:2020-12
- 期刊:
- 影响因子:5.8
- 作者:Ghanim GE;Rio DC;Teixeira FK
- 通讯作者:Teixeira FK
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DONALD C RIO其他文献
DONALD C RIO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DONALD C RIO', 18)}}的其他基金
Profiling the locations of U1 snRNP binding across the nuclear human and Drosophila transcriptomes.
分析 U1 snRNP 在人类核转录组和果蝇核转录组中的结合位置。
- 批准号:
9789352 - 财政年份:2018
- 资助金额:
$ 70.98万 - 项目类别:
DNA transposons and alternative pre-mRNA splicing
DNA 转座子和选择性前 mRNA 剪接
- 批准号:
9281754 - 财政年份:2016
- 资助金额:
$ 70.98万 - 项目类别:
DNA transposons and alternative pre-mRNA splicing.
DNA 转座子和选择性前 mRNA 剪接。
- 批准号:
10429905 - 财政年份:2016
- 资助金额:
$ 70.98万 - 项目类别:
DNA transposons and alternative pre-mRNA splicing
DNA 转座子和选择性前 mRNA 剪接
- 批准号:
9926901 - 财政年份:2016
- 资助金额:
$ 70.98万 - 项目类别:
Methods for purification of individual nuclear pre-messenger RNA-protein complexe
单个核前信使 RNA-蛋白质复合物的纯化方法
- 批准号:
8118469 - 财政年份:2010
- 资助金额:
$ 70.98万 - 项目类别:
相似海外基金
Mechanisms of Splice Site Selection in Health and Disease
健康和疾病中剪接位点选择的机制
- 批准号:
10797554 - 财政年份:2023
- 资助金额:
$ 70.98万 - 项目类别:
Quantitative and Predictive Analysis of 5' Splice Site Recognition by U1 snRNP using Massively Parallel Arrays
使用大规模并行阵列对 U1 snRNP 5 剪接位点识别进行定量和预测分析
- 批准号:
10460136 - 财政年份:2021
- 资助金额:
$ 70.98万 - 项目类别:
Quantitative and Predictive Analysis of 5' Splice Site Recognition by U1 snRNP using Massively Parallel Arrays
使用大规模并行阵列对 U1 snRNP 5 剪接位点识别进行定量和预测分析
- 批准号:
10311645 - 财政年份:2021
- 资助金额:
$ 70.98万 - 项目类别:
Uncovering Mechanisms of 5' Splice Site Fidelity
揭示 5 剪接位点保真度的机制
- 批准号:
10532793 - 财政年份:2020
- 资助金额:
$ 70.98万 - 项目类别:
How do RNA-binding proteins control splice site selection?
RNA 结合蛋白如何控制剪接位点选择?
- 批准号:
BB/T000627/1 - 财政年份:2020
- 资助金额:
$ 70.98万 - 项目类别:
Research Grant
Mechanism of Splice Site Recognition by the U2AF/SF1 Protein Complex
U2AF/SF1 蛋白复合物的剪接位点识别机制
- 批准号:
553974-2020 - 财政年份:2020
- 资助金额:
$ 70.98万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Uncovering Mechanisms of 5' Splice Site Fidelity
揭示 5 剪接位点保真度的机制
- 批准号:
10316181 - 财政年份:2020
- 资助金额:
$ 70.98万 - 项目类别:
Mechanisms of Splice Site Selection in Health and Disease
健康和疾病中剪接位点选择的机制
- 批准号:
10769989 - 财政年份:2019
- 资助金额:
$ 70.98万 - 项目类别:
Mechanisms of Splice Site Selection in Health and Disease
健康和疾病中剪接位点选择的机制
- 批准号:
10808389 - 财政年份:2019
- 资助金额:
$ 70.98万 - 项目类别:
Mechanisms of Splice Site Selection in Health and Disease
健康和疾病中剪接位点选择的机制
- 批准号:
10585911 - 财政年份:2019
- 资助金额:
$ 70.98万 - 项目类别:














{{item.name}}会员




