Understanding how cells invade through basement membrane in vivo
了解体内细胞如何侵入基底膜
基本信息
- 批准号:10631095
- 负责人:
- 金额:$ 61.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdhesionsArthritisAsthmaBasement membraneBehaviorBiological ProcessCaenorhabditis elegansCell membraneCell modelCell physiologyCellsClinical TrialsCommunicationDevelopmentDiseaseDisseminated Malignant NeoplasmElectron TransportEnzymesEventExtracellular MatrixGeneticGenetic TranscriptionGenomic approachGlucoseHealthHumanImmuneImmune System DiseasesInfectionInjuryInvadedLipidsMalignant NeoplasmsMatrix Metalloproteinase InhibitorMatrix MetalloproteinasesMembraneMissionMitochondriaMolecularMultiple SclerosisSiteStereotypingStressStrokeStructureTherapeuticTissuesTranscriptional RegulationUnited States National Institutes of HealthVisualVisualizationWorkcell typedevelopmental diseaseexperimental studyfunctional genomicsgenetic manipulationgenome editinghealinghuman diseaseimprovedin vitro Assayin vivoin vivo Modellipid biosynthesismigrationnovel therapeutic interventionoverexpressionpreventprogramssensortrafficking
项目摘要
PROJECT SUMMARY
Basement membrane (BM) is a dense, sheet-like extracellular matrix that surrounds most tissues. During
development and immune cell trafficking, specialized cells acquire the unique ability to breach BM barriers to
disperse, construct tissues, and migrate to sites of infection and injury. Cell invasion is also inappropriately
initiated during numerous diseases and underlies tissue destruction in asthma, stroke, arthritis, multiple
sclerosis, and metastatic cancer. Understanding how cells traverse BM barriers is thus of fundamental
importance in improving human health. Cell invasion events are often stochastic, rapid, and involve dynamic
adhesions and communication between the invading cell, the BM, and the neighboring tissues. Owing to this
complexity, it is not possible to faithfully recapitulate cell invasion with in vitro assays, and it has been difficult
to visualize and genetically dissect invasion in vertebrate tissues. As a result, the mechanisms underlying cell
invasive behavior remain poorly understood. Anchor cell invasion in C. elegans is a highly stereotyped in vivo
model of cell invasion that uniquely combines many powerful experimental approaches including subcellular
visual analysis of cell-BM interactions, molecular activity sensors, rapid genome editing, cell-type specific gene
manipulation, and powerful forward genetic and functional genomic approaches. Using these strengths, this
study will characterize how invading cells acquire and use energy to fuel BM invasion. This work will reveal
mechanisms that direct polarized glucose import and the construction of specialized electron transport chain
enriched mitochondria that provide localized ATP to power the BM breaching machinery. Further, the outlined
experiments will determine how lipid biosynthesis is integrated into a conserved cell invasion transcriptional
program and how lipid producing enzymes, which are overexpressed in most metastatic cancers, build a large,
transient, invasive protrusion that opens paths through BM barriers. The proposed study will also elucidate how
invasive cells adapt their invasion program to the absence of matrix metalloproteinases (MMPs) by physically
displacing the BM, which will inform more effective approaches to block invasion with MMP inhibitors that have
thus far failed to be effective in clinical trials. Finally, this work will identify molecular mechanisms that prevent
and heal plasma membrane damage during BM breaching, thus revealing mechanisms that could be exploited
to target cells in the act of invading. These integrative studies spanning cellular energetics, extracellular matrix,
transcriptional regulation, and membrane dynamics are relevant to the NIH’s mission as they will lead to a
deeper understanding of the fundamental biological process of cell invasive behavior, thus allowing for the
development of better therapeutic strategies to modulate invasion in human disease.
项目概要
基底膜 (BM) 是一种致密的片状细胞外基质,包围着大多数组织。期间
发育和免疫细胞运输,特化细胞获得突破 BM 屏障的独特能力
分散、构建组织并迁移到感染和损伤部位。细胞侵袭也不当
在许多疾病期间启动,是哮喘、中风、关节炎、多发性硬化症等组织破坏的基础
硬化症和转移性癌症。因此,了解细胞如何穿越 BM 屏障至关重要
对改善人类健康具有重要意义。细胞侵袭事件通常是随机的、快速的,并且涉及动态
入侵细胞、BM 和邻近组织之间的粘附和通讯。由于这个
复杂性,不可能通过体外测定忠实地重现细胞侵袭,并且很难
对脊椎动物组织中的入侵进行可视化和基因剖析。因此,细胞的潜在机制
入侵行为仍然知之甚少。线虫中的锚细胞侵袭是体内高度定型的
细胞侵袭模型独特地结合了许多强大的实验方法,包括亚细胞
细胞-BM相互作用的可视化分析、分子活性传感器、快速基因组编辑、细胞类型特异性基因
操作,以及强大的正向遗传和功能基因组方法。利用这些优势,这
研究将描述入侵细胞如何获取和使用能量来促进骨髓入侵。这部作品将揭示
指导极化葡萄糖输入的机制和专门的电子传输链的构建
丰富的线粒体提供局部 ATP 为 BM 破坏机制提供动力。此外,概述的
实验将确定脂质生物合成如何整合到保守的细胞侵袭转录中
计划以及在大多数转移性癌症中过度表达的脂质产生酶如何构建一个大的、
短暂的、侵入性的突出,打开穿过BM屏障的路径。拟议的研究还将阐明如何
侵袭性细胞通过物理方式调整其侵袭程序以适应基质金属蛋白酶(MMP)的缺失
取代 BM,这将提供更有效的方法来阻止 MMP 抑制剂的入侵
迄今为止在临床试验中未能取得有效效果。最后,这项工作将确定阻止的分子机制
并修复 BM 破坏期间的质膜损伤,从而揭示可利用的机制
在入侵行为中针对目标细胞。这些综合研究涵盖细胞能量学、细胞外基质、
转录调控和膜动力学与 NIH 的使命相关,因为它们将导致
更深入地了解细胞侵袭行为的基本生物过程,从而允许
开发更好的治疗策略来调节人类疾病的侵袭。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David R Sherwood其他文献
David R Sherwood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David R Sherwood', 18)}}的其他基金
A Comprehensive Endogenous Basement Membrane Toolkit to Elucidate how Basement Membranes Stretch on Mechanically Active Tissues and Decline during Aging
一个全面的内源性基底膜工具包,用于阐明基底膜如何在机械活动组织上伸展和衰老过程中的衰退
- 批准号:
10430646 - 财政年份:2022
- 资助金额:
$ 61.66万 - 项目类别:
A Comprehensive Endogenous Basement Membrane Toolkit to Elucidate how Basement Membranes Stretch on Mechanically Active Tissues and Decline during Aging
一个全面的内源性基底膜工具包,用于阐明基底膜如何在机械活动组织上伸展和衰老过程中的衰退
- 批准号:
10580610 - 财政年份:2022
- 资助金额:
$ 61.66万 - 项目类别:
Understanding how cells invade through basement membrane in vivo
了解体内细胞如何侵入基底膜
- 批准号:
9279198 - 财政年份:2016
- 资助金额:
$ 61.66万 - 项目类别:
Understanding how cells invade through basement membrane in vivo
了解体内细胞如何侵入基底膜
- 批准号:
9070084 - 财政年份:2016
- 资助金额:
$ 61.66万 - 项目类别:
Visualizing and Elucidating the Role of Force on Type IV Collagen in Development
可视化和阐明力对 IV 型胶原蛋白发育的作用
- 批准号:
9324296 - 财政年份:2016
- 资助金额:
$ 61.66万 - 项目类别:
Understanding how cells invade through basement membrane in vivo
了解体内细胞如何侵入基底膜
- 批准号:
10404047 - 财政年份:2016
- 资助金额:
$ 61.66万 - 项目类别:
Understanding how cells invade through basement membrane in vivo
了解体内细胞如何侵入基底膜
- 批准号:
10795365 - 财政年份:2016
- 资助金额:
$ 61.66万 - 项目类别:
Understanding How Invadosomes Breach Basement Membrane In Vivo
了解体内侵袭体如何突破基底膜
- 批准号:
8588342 - 财政年份:2012
- 资助金额:
$ 61.66万 - 项目类别:
Understanding How Invadosomes Breach Basement Membrane In Vivo
了解体内侵袭体如何突破基底膜
- 批准号:
8221154 - 财政年份:2012
- 资助金额:
$ 61.66万 - 项目类别:
Understanding How Invadosomes Breach Basement Membrane In Vivo
了解体内侵袭体如何突破基底膜
- 批准号:
8413036 - 财政年份:2012
- 资助金额:
$ 61.66万 - 项目类别:
相似国自然基金
Autoimmune diseases therapies: variations on the microbiome in rheumatoid arthritis
- 批准号:31171277
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
Tissue tropism of PD-1 therapy in ulcerative colitis and rheumatoid arthritis
PD-1治疗溃疡性结肠炎和类风湿性关节炎的组织向性
- 批准号:
MR/Y009681/1 - 财政年份:2024
- 资助金额:
$ 61.66万 - 项目类别:
Fellowship
Do autoantibodies to aberrantly glycosylated MUC1 drive extra-articular rheumatoid arthritis, and can GSK assets prevent driver antigen formation?
针对异常糖基化 MUC1 的自身抗体是否会导致关节外类风湿性关节炎,GSK 资产能否阻止驱动抗原形成?
- 批准号:
MR/Y022947/1 - 财政年份:2024
- 资助金额:
$ 61.66万 - 项目类别:
Research Grant
Preclinical development of an extracellular vesicle biotherapeutic for juvenile idiopathic arthritis
幼年特发性关节炎细胞外囊泡生物治疗药物的临床前开发
- 批准号:
10068495 - 财政年份:2024
- 资助金额:
$ 61.66万 - 项目类别:
Collaborative R&D
The delivery of miR-9 and RasGRP4 siRNA via high selectivity bispecific antibody conjugated lactosome: Targeting therapy for rheumatoid arthritis (RA) active synovial macrophage and osteoclast
通过高选择性双特异性抗体缀合乳糖体递送 miR-9 和 RasGRP4 siRNA:类风湿性关节炎 (RA) 活性滑膜巨噬细胞和破骨细胞的靶向治疗
- 批准号:
24K19237 - 财政年份:2024
- 资助金额:
$ 61.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Exploring the inflammatory mediators degraded by MMP-2 in MMP-2-deficient mice with knee arthritis through a novel TMT-TAILS quantitative proteomics
通过新型 TMT-TAILS 定量蛋白质组学探索 MMP-2 缺陷型膝关节炎小鼠中 MMP-2 降解的炎症介质
- 批准号:
24K19850 - 财政年份:2024
- 资助金额:
$ 61.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of an adaptive platform trial to prevent Rheumatoid Arthritis in partnership with First Nations People.
与原住民合作开发预防类风湿关节炎的适应性平台试验。
- 批准号:
491810 - 财政年份:2023
- 资助金额:
$ 61.66万 - 项目类别:
Operating Grants
The role of diet, as mediated by the gut microbiome, on childhood arthritis disease activity: a feasibility intervention study.
肠道微生物组介导的饮食对儿童关节炎疾病活动的作用:一项可行性干预研究。
- 批准号:
489316 - 财政年份:2023
- 资助金额:
$ 61.66万 - 项目类别:
Operating Grants
Investigation of hypoxia-inducible factor-1 (HIF-1) as a novel therapeutic target for juvenile idiopathic arthritis.
研究缺氧诱导因子-1 (HIF-1) 作为幼年特发性关节炎的新治疗靶点。
- 批准号:
23K14987 - 财政年份:2023
- 资助金额:
$ 61.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
DEMORA: DEep spatial characterization of synovial MacrOphages in Rheumatoid Arthritis
DEMORA:类风湿性关节炎滑膜巨噬细胞的深度空间特征
- 批准号:
EP/Y027760/1 - 财政年份:2023
- 资助金额:
$ 61.66万 - 项目类别:
Fellowship
The roles and mechanisms of inflammation resolution in the development of Rheumatoid Arthritis
炎症消退在类风湿关节炎发展中的作用和机制
- 批准号:
10733789 - 财政年份:2023
- 资助金额:
$ 61.66万 - 项目类别:














{{item.name}}会员




