Exploring envelope stress response toxicity and regulation in gram-negative bacteria
探索革兰氏阴性菌的包膜应激反应毒性和调节
基本信息
- 批准号:10629505
- 负责人:
- 金额:$ 14.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAntibioticsBacteriaBase PairingBindingCellsClientCodon NucleotidesComplexDataDevelopmentEscherichia coliFutureGammaproteobacteriaGene ExpressionGene ProteinsGoalsGram-Negative BacteriaHealthHeat shock proteinsHeat-Shock ResponseHomologous GeneInfectionKnowledgeLiteratureMethodsMicrobeMinority-Serving InstitutionMissionModelingMolecular ChaperonesMulti-Drug ResistanceOrganismOutcomePredispositionProductionProgram SustainabilityProteinsPseudomonas aeruginosaPublic HealthPublishingRecording of previous eventsRegulationRepressionResearchResearch PersonnelRoleSigma FactorStressSuppressor MutationsSystemTestingToxic effectUnited States National Institutes of HealthVibrio choleraeWestern BlottingWorkbactericidebiological adaptation to stresscell envelopegenome sequencingimprovedinfection burdenmarginalized populationmutantpathogenrepairedresponsestudent trainingtherapeutic targetwhole genome
项目摘要
Critical to bacterial survival is the proper coordination and response to external stress. For example, the
envelope stress response (ESR) allows bacteria to repair and defend against cell envelope damage, which is
often sustained during antibiotic exposure. However, overactivation of the ESR is toxic in various microbes,
suggesting that the ESR may be manipulated to kill bacteria. To exploit this vulnerability, how bacterial cells
overcome this toxicity and regulate ESR overactivation needs to be understood. Preliminary work uncovered
that the heat shock co-chaperone DnaJ regulates the sE-regulated ESR in Pseudomonas aeruginosa. The
objective of this application is to uncover the mechanism of this regulation and characterize its extent. Although
DnaJ, in complex with DnaK and GrpE, represses the heat shock response via degradation of this response’s
alternative sigma factor, preliminary data suggest that DnaJ regulates the activity of the P. aeruginosa sE
homolog AlgU via a different mechanism. The overarching hypothesis is that DnaJ does not regulate AlgU
activity via changes in protein levels of known ESR regulators, that instead DnaJ regulates AlgU activity and
the ESR via direct binding to this sigma factor, and that this role of DnaJ on the sE-dependent ESR may be
conserved across gram-negative bacteria. This hypothesis will be tested via three specific aims. In Aim 1, the
effect of DnaJ on gene expression and protein levels of AlgU-dependent ESR regulators will be determined via
RT-qPCR and Western Blot under conditions of ESR activation. In Aim 2, DnaJ binding partners that affect the
AlgU-dependent ESR will be identified. This Aim will examine which DnaJ domain is important for proper AlgU-
dependent ESR activation, if DnaJ binds to AlgU, and if the effect of DnaJ on the ESR requires DnaK, a DnaJ-
binding partner that is important for its functions in the heat shock response. In Aim 3, DnaJ-dependent
activation of the sE-regulated ESR will be examined in two other, highly genetically tractable gram-negative
bacteria, Escherichia coli and Vibrio cholerae, to examine if this mechanism is potentially conserved across
Gammaproteobacteria. The outcomes of these Aims are expected to define the mechanistic effect of DnaJ on
the ESR (Aims 1-2) and address the potential universality of this mechanism (Aim 3). Furthermore, this work
will add to our long-term goal of understanding the mechanism(s) underlying AlgU toxicity in P. aeruginosa,
which is important if therapeutics targeting the sE-dependent ESR are to be developed. These outcomes and
their potential applications are expected to have a positive impact on the growing problem of multidrug-
resistant infections. In addition, as DnaJ has been shown to affect multiple stress response systems in addition
to the ESR, this proposal speculates that DnaJ may be a universal stress coordination hub across bacteria,
emphasizing its importance in overall bacterial stress response. Finally, this work will benefit the research
excellence of a minority-serving institution by sustaining the program of a PI with a strong history of training
student researchers from marginalized groups.
对细菌的生存至关重要的是适当的协调和对外部压力的反应。例如,
信封应力反应(ESR)允许细菌修复和防御细胞信封损伤,即
在抗生素暴露期间经常维持。但是,ESR的过度激活在各种微生物中有毒,
表明可以操纵ESR以杀死细菌。为了利用这种脆弱性,细菌细胞如何
克服这种毒性并调节ESR过度活化需要了解。初步工作被发现
热休克伴侣DNAJ调节铜绿假单胞菌中的SE调节ESR。这
该应用的目的是揭示该调节的机制并表征其程度。虽然
DNAJ与DNAK和GRPE复杂,反映了通过此响应的降解的热冲击响应
替代Sigma因子,初步数据表明DNAJ调节铜绿假单胞菌的活性
同源物通过不同的机制。总体假设是DNAJ不调节Algu
通过已知ESR调节剂的蛋白质水平的变化而进行活性,而DNAJ调节了Algu活性和
ESR通过直接结合与该Sigma因子,并且DNAJ在SE依赖性ESR中的这种作用可能为
跨革兰氏阴性细菌保守。该假设将通过三个特定目的进行检验。在AIM 1中
DNAJ对ALGU依赖性ESR调节剂的基因表达和蛋白质水平的影响将通过
在ESR激活条件下,RT-QPCR和Western印迹。在AIM 2中,DNAJ约束伙伴影响了
将确定依赖ALGU的ESR。该目标将检查哪个DNAJ域对于适当的algu-很重要
依赖性ESR激活,如果DNAJ与ALGU结合,并且DNAJ对ESR的影响需要DNAK,则DNAJ-
结合伙伴对于其在热冲击响应中的功能很重要。在AIM 3中,DNAJ依赖性
将以另外两个高度一致的革兰氏阴性剂量检查SECHENCHED ESR的激活
细菌,大肠杆菌和弧菌霍乱,以检查这种机制是否有可能保守
伽马杆菌。这些目标的结果有望定义DNAJ的机械效应
ESR(目标1-2)并解决了该机制的潜在宇宙(AIM 3)。此外,这项工作
将增加我们理解铜绿假单胞菌中基础ALGU毒性的机制的长期目标,
如果要开发针对SE依赖性ESR的治疗,这一点很重要。这些结果和
预计他们的潜在应用将对多饮用的日益增长的问题产生积极影响
抗性感染。另外,由于DNAJ已被证明会影响多个应力响应系统。
对于ESR,该提案推测DNAJ可能是跨细菌的通用应力协调枢纽,
强调其在整体细菌应激反应中的重要性。最后,这项工作将使研究受益
通过维持PI计划具有悠久培训历史,少数派服务机构的卓越
边缘化群体的学生研究人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Boo Shan Tseng其他文献
Boo Shan Tseng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Boo Shan Tseng', 18)}}的其他基金
Matrix-associated proteins in biofilm tolerance: Psl and ecotin
生物膜耐受性中的基质相关蛋白:Psl 和 Ecotin
- 批准号:
9291421 - 财政年份:2016
- 资助金额:
$ 14.68万 - 项目类别:
Matrix-associated proteins in biofilm tolerance: Psl and ecotin
生物膜耐受性中的基质相关蛋白:Psl 和 Ecotin
- 批准号:
9011919 - 财政年份:2016
- 资助金额:
$ 14.68万 - 项目类别:
相似国自然基金
多环芳烃影响大肠杆菌抗生素耐药性进化的分子机制
- 批准号:32301424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
苏打盐碱湿地干湿交替对抗生素迁移转化的影响机制
- 批准号:42301134
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三峡库区沉积物中微塑料和抗生素复合污染对N2O排放过程的影响机制
- 批准号:52300244
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境兽用抗生素暴露对儿童心血管危险因素聚集影响及SCAP-SREBP脂代谢通路基因甲基化调控机制研究
- 批准号:82373593
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
抗生素对不同生长阶段蓝藻光合电子传递和生理代谢的影响及分子机制研究
- 批准号:52300219
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Environmental Chemical Impact on the Host-Microbiome Interaction
环境化学对宿主-微生物组相互作用的影响
- 批准号:
10641509 - 财政年份:2023
- 资助金额:
$ 14.68万 - 项目类别:
Identifying Convergent Circuit Disruptions Across Genetically-Distinct Models of Autism
识别基因不同的自闭症模型中的收敛回路中断
- 批准号:
10638144 - 财政年份:2023
- 资助金额:
$ 14.68万 - 项目类别:
Copper Sensing in Uropathogenic Escherichia coli
尿路致病性大肠杆菌中的铜感应
- 批准号:
10604449 - 财政年份:2023
- 资助金额:
$ 14.68万 - 项目类别:
Multifunctional Intelligent Hierarchical Fibrous Biomaterials Integrated with Multimodal Biosensing and Feedback-Based Interventions for Healing Infected Chronic Wounds
多功能智能分层纤维生物材料与多模式生物传感和基于反馈的干预措施相结合,用于治愈感染的慢性伤口
- 批准号:
10861531 - 财政年份:2023
- 资助金额:
$ 14.68万 - 项目类别:
Interactions Between the Microbiota and Helicobacter pylori in Gastric Carcinogenesis
微生物群与幽门螺杆菌在胃癌发生中的相互作用
- 批准号:
10709135 - 财政年份:2023
- 资助金额:
$ 14.68万 - 项目类别: