Acoustic microvortices instrumentation for dosage controlled, high efficiency cell engineering
用于剂量控制、高效细胞工程的声学微涡流仪器
基本信息
- 批准号:10629435
- 负责人:
- 金额:$ 29.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcousticsAddressAllogenicAutomationAwardBenchmarkingCRISPR/Cas technologyCell Membrane PermeabilityCell NucleusCell SurvivalCell TherapyCell membraneCellsCellular PhoneClinicClustered Regularly Interspaced Short Palindromic RepeatsComplexCytoplasmDevelopmentDiffusionEngineered GeneEngineeringExposure toFrequenciesGenesGeneticGoalsHarvestHumanImmuneImmunologicsImmunotherapyKnock-outLateralMalignant NeoplasmsMechanicsMediatingMembraneMessenger RNAMethodsMicrofluidicsMolecularNobel PrizeNucleic AcidsOcular orbitOncogenicOutcomePlasmidsPopulationPreparationProcessProteinsPumpReagentRotationSafetySamplingStreamSystemT-LymphocyteTechniquesToxic effectTransducersTransfectionTransgenesViral Vectorcancer immunotherapycell typecellular engineeringchimeric antigen receptor T cellscostdesigndosageelectric fieldinnovationinstrumentinstrumentationmembrane excitationnanoporeportabilityprototypesuccesstechnological innovationtechnology development
项目摘要
Contact PD/PI: LEE, ABRAHAM
Acoustic microvortices instrumentation for dosage controlled, high efficiency cell engineering
Abstract - In years 2018 and 2020, Nobel Prizes were awarded to pioneers in cancer immunotherapy
and the gene editing CRISPR-Cas9 method. This has ushered in a new era of cell engineering that
demands technological innovations to produce genetic-modified and reprogrammed immune cells (e.g.,
T cells). CAR T cell immunotherapy is one type of cell therapy that has already achieved success in
the clinic for treating cancer. The holy grail is to produce universal CAR T cells, genetically modified
and engineered allogeneic T cells derived from healthy donors that avoid immunologic rejection. This
requires gene engineering techniques such as CRISPR-Cas9 that can deliver multiplex gene insertions
and knock-outs with controlled dosage to enhance viability and efficacy of the engineered cells.
Although viral vectors are the method of choice for cell engineering, there are major concerns over their
safety as well as the complex, costly preparation process. Nonviral transfection methods are
alternatives to viral vectors that avoid the deleterious byproducts such as immune-mediated toxicity
and oncogenic transgene concerns. Here we introduce the Acoustic-Electric Shear Orbiting Poration
(AESOP) platform that addresses several of the known challenges for nonviral transfection techniques,
including cell viability and dosage-controlled intracellular delivery while achieving relatively high
throughput. AESOP is based on a microfluidic platform termed “lateral cavity acoustic transducers
(LCATs)” that can form an array of microvortices activated by acoustic energy. The main innovation
of the AESOP platform is the trapping of suspended populations of cells in tunable 3-D
microvortices and incorporating a two-step membrane disruption strategy to precisely
permeabilize cell membranes. By trapping cells to tumble in whirlpool-like microvortices, this platform
optimizes the delivery of intended cargo sizes with uniform poration of the cell membranes via
mechanical shear followed by the modulated enlargement of these nanopores via electric field. Using
AESOP, we will focus on technology development for producing the universal CAR T cells. By
controlling dosage, a decreased amount of CRISPR reagents in cells could reduce off-target effects.
Furthermore, the uniform delivery enables the delivery of large cargo sizes necessary for
immunotherapy-related gene transfection and gene editing. This 4-year project has four specific
aims: 1- Generate acoustic microstreaming vortices for uniform cell membrane nanopores and
uniform local mixing; 2- Demonstrate uniform electric field enlargement of nanopores for cargo
delivery; 3- Design prototype AESOP instrumentation and 4- Quantitative benchmark of AESOP
for intracellular delivery of large size cargos with dosage control for the development of
universal CAR T cells.
联系PD/PI:LEE,ABRAHAM
用于剂量控制、高效细胞工程的声学微涡旋仪器
摘要-在2018年和2020年,诺贝尔奖被授予癌症免疫治疗的先驱者
和基因编辑CRISPR-Cas9方法。这开创了细胞工程学的新时代,
需要技术创新来产生基因修饰和重编程的免疫细胞(例如,
T细胞)。CAR T细胞免疫疗法是一种细胞疗法,已经在免疫治疗中取得了成功。
治疗癌症的诊所圣杯是生产通用的CAR-T细胞,
以及来自健康供体的工程化同种异体T细胞,其避免免疫排斥。这
需要基因工程技术,如CRISPR-Cas9,
以及用受控剂量敲除以增强工程化细胞的活力和功效。
尽管病毒载体是细胞工程的首选方法,但其在细胞工程中的应用仍存在重大问题。
安全性以及复杂、昂贵的制备过程。非病毒转染方法是
避免有害副产物如免疫介导的毒性的病毒载体的替代物
和致癌转基因问题。本文介绍声-电剪切轨道孔
(AESOP)平台,解决了非病毒转染技术的几个已知挑战,
包括细胞活力和剂量控制的细胞内递送,
吞吐量AESOP是基于一个微流体平台,称为“横向腔声换能器
(LCAT)”,可以形成由声能激活的微涡旋阵列。主要创新
的AESOP平台是捕获悬浮的细胞群体在可调的3-D
微涡旋,并结合两步膜破坏策略,
使细胞膜透化。通过捕获细胞在水池状的微漩涡中翻滚,这个平台
通过均匀的细胞膜穿孔优化预期货物大小的递送,
机械剪切,然后通过电场调节这些纳米孔的扩大。使用
AESOP,我们将专注于生产通用CAR T细胞的技术开发。通过
通过控制剂量,细胞中CRISPR试剂的量减少可以减少脱靶效应。
此外,统一交付使得能够交付大型货物,
免疫治疗相关的基因转染和基因编辑。这个为期四年的项目有四个具体的
目的:1-产生用于均匀细胞膜纳米孔的声学微流涡旋,
2-证明用于货物的纳米孔的均匀电场扩大
交付; 3-设计原型AESOP仪器和4-AESOP的定量基准
用于大尺寸货物的细胞内递送,具有剂量控制,用于开发
通用CAR T细胞。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abraham P. Lee其他文献
A Microphysiological HHT-on-a-Chip Platform Recapitulates Patient Vascular Lesions
微生理 HHT 芯片平台重现患者血管病变
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Christopher C W Hughes;Jennifer Fang;Christopher J. Hatch;Jillian W. Andrejecsk;William Van Trigt;Damie J Juat;Yu;Satomi Matsumoto;Abraham P. Lee - 通讯作者:
Abraham P. Lee
Advanced Imaging Catheter: Final Project Report
高级成像导管:最终项目报告
- DOI:
10.2172/15005329 - 发表时间:
2001 - 期刊:
- 影响因子:9.8
- 作者:
P. Krulevitch;B. Colston;L. DaSilva;D. Hilken;J. Kluiwstra;Abraham P. Lee;R. London;R. Miles;Daniel L. Schumann;K. Seward;Amy W. Wang - 通讯作者:
Amy W. Wang
Mixed-sputter deposition of Ni-Ti-Cu shape memory films
Ni-Ti-Cu形状记忆薄膜的混合溅射沉积
- DOI:
10.1016/0040-6090(95)07072-9 - 发表时间:
1996 - 期刊:
- 影响因子:2.1
- 作者:
P. Krulevitch;P. Ramsey;D. Makowiecki;Abraham P. Lee;M. A. Northrup;G. Johnson - 通讯作者:
G. Johnson
A Microdevice To Indicate Human Neural Stem Cell Differentiation Potential
- DOI:
10.1016/j.bpj.2008.12.169 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Fatima H. Labeed;Jente Lu;Steve A. Marchenko;Kai F. Hoettges;Michael P. Hughes;Edwin S. Monuki;Abraham P. Lee;Lisa A. Flanagan - 通讯作者:
Lisa A. Flanagan
DORA: A Dynamic File Assignment Strategy with Replication
DORA:具有复制功能的动态文件分配策略
- DOI:
10.1109/icpp.2009.8 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Jonathan Tjioe;Renata Widjaja;Abraham P. Lee;Tao Xie - 通讯作者:
Tao Xie
Abraham P. Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abraham P. Lee', 18)}}的其他基金
Integrated Microfluidic Platform for Point-of-Care Serodiagnostics
用于护理点血清诊断的集成微流控平台
- 批准号:
8393163 - 财政年份:2012
- 资助金额:
$ 29.69万 - 项目类别:
Integrated Microfluidic Platform for Point-of-Care Serodiagnostics
用于护理点血清诊断的集成微流控平台
- 批准号:
8513911 - 财政年份:2012
- 资助金额:
$ 29.69万 - 项目类别:
Microfluidics systems for formulation of contrast agents for molecular imaging
用于配制分子成像造影剂的微流体系统
- 批准号:
7342404 - 财政年份:2007
- 资助金额:
$ 29.69万 - 项目类别:
Microfluidics systems for formulation of contrast agents for molecular imaging
用于配制分子成像造影剂的微流体系统
- 批准号:
7186482 - 财政年份:2007
- 资助金额:
$ 29.69万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 29.69万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 29.69万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 29.69万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 29.69万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 29.69万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 29.69万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 29.69万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 29.69万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 29.69万 - 项目类别:
Discovery Launch Supplement