Developing and validating EHR-integrated readmission risk prediction models for hospitalized patients with diabetes
开发和验证住院糖尿病患者的 EHR 集成再入院风险预测模型
基本信息
- 批准号:10629295
- 负责人:
- 金额:$ 54.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-21 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:Admission activityCaringClinicalClinical DataClinical PathsClinical ResearchCollectionComplementDataData SetDependenceDiabetes MellitusElectronic Health RecordGoalsHospitalizationHospitalsInstitutionInsulinInterventionLaboratoriesLength of StayMachine LearningManualsModelingParticipantPatient ReadmissionPatientsPharmaceutical PreparationsPublishingRecording of previous eventsResearchRiskRisk FactorsTechniquesTestingTranslatingTranslationsValidationWorkclinical practicecohortcomorbiditycomorbidity Indexcostcost outcomesdeep learningdemographicsdesigndiabetes riskelectronic health record systemexperiencehigh riskhospital readmissionimprovedindividual patientlearning strategymembermodel developmentpatient orientedpatient subsetspoint of carepredictive modelingpredictive toolsprospectivereadmission riskrisk predictionrisk prediction modelsociodemographicsstatisticstool
项目摘要
PROJECT SUMMARY/ABSTRACT
Hospital readmission is an undesirable, costly outcome that may be preventable. Hospitalized
patients with diabetes are at higher risk of readmission within 30 days (30-d readmission) than
patients without diabetes, and >1 million readmissions occur among diabetes patients in the US
annually. Certain interventions can reduce readmission risk, but applying these interventions
widely is cost prohibitive. One approach for improving the efficiency of interventions that reduce
readmission risk is to target high-risk patients. We previously published a model, the Diabetes
Early Readmission Risk Indicator (DERRITM), that predicts the risk of all-cause 30-d readmission
of patients with diabetes. The DERRI, however, has modest predictive accuracy (C-statistic 0.63-
0.69), and requires manual data input. Recently, we demonstrated that adding variables to the
DERRI substantially improves predictive accuracy (DERRIplus, C-statistic 0.82). However, using
this larger model to predict readmission risk based on manual input of data would be too labor
intensive for clinical settings. Indeed, most readmission risk prediction models are limited by the
trade-off between accuracy and ease of use; lack of translation to a tool that integrates with
clinical workflow; modest accuracy; lack of validation; and dependence on data only available
after hospital discharge.
The objectives of the current proposal are: 1) To develop more accurate all-cause
unplanned 30-d readmission risk prediction models using electronic health record (EHR) data of
patients with diabetes (eDERRI); 2) To translate the models to an automated, EHR-based tool
that predicts % readmission risk of hospitalized patients; and 3) To prospectively validate the
eDERRI models and tool. The new eDERRI models will expand upon the variables in the
DERRIplus based on availability in EHR data (e.g., sociodemographics, encounter history,
medication use, laboratory results, comorbidities, and length of stay). To develop the models, we
will leverage data from the PaTH Clinical Data Research Network (CDRN), a multi-center, 40-plus
hospital member of the National Patient-Centered Clinical Research Network (PCORnet). We will
apply state-of-the-art deep-learning methods to develop optimal predictive models. This project
will analyze a large, multi-center cohort of nearly 340,000 discharges with cutting-edge
techniques to develop better models and translate them to an automated tool that predicts
readmission risk for individual patients with diabetes. The proposed tool would identify higher risk
patients more likely to benefit from intervention, thus improving care and reducing costs.
项目总结/文摘
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hospital Readmission Risk and Risk Factors of People with a Primary or Secondary Discharge Diagnosis of Diabetes.
- DOI:10.3390/jcm12041274
- 发表时间:2023-02-06
- 期刊:
- 影响因子:3.9
- 作者:Rubin DJ;Maliakkal N;Zhao H;Miller EE
- 通讯作者:Miller EE
Predicting and Preventing Acute Care Re-Utilization by Patients with Diabetes.
- DOI:10.1007/s11892-021-01402-7
- 发表时间:2021-09-04
- 期刊:
- 影响因子:4.2
- 作者:Rubin DJ;Shah AA
- 通讯作者:Shah AA
The Diabetes Transition of Hospital Care (DiaTOHC) Pilot Study: A Randomized Controlled Trial of an Intervention Designed to Reduce Readmission Risk of Adults with Diabetes.
- DOI:10.3390/jcm11061471
- 发表时间:2022-03-08
- 期刊:
- 影响因子:3.9
- 作者:Rubin DJ;Gogineni P;Deak A;Vaz C;Watts S;Recco D;Dillard F;Wu J;Karunakaran A;Kondamuri N;Zhao H;Naylor MD;Golden SH;Allen S
- 通讯作者:Allen S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel J Rubin其他文献
Daniel J Rubin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel J Rubin', 18)}}的其他基金
Developing and validating EHR-integrated readmission risk prediction models for hospitalized patients with diabetes
开发和验证住院糖尿病患者的 EHR 集成再入院风险预测模型
- 批准号:
10414988 - 财政年份:2020
- 资助金额:
$ 54.84万 - 项目类别:
Developing and validating EHR-integrated readmission risk prediction models for hospitalized patients with diabetes
开发和验证住院糖尿病患者的 EHR 集成再入院风险预测模型
- 批准号:
10245208 - 财政年份:2020
- 资助金额:
$ 54.84万 - 项目类别:
Predicting and Preventing Hospital Readmission in Patients with Diabetes and CVD
预测和预防糖尿病和心血管疾病患者再入院
- 批准号:
8891852 - 财政年份:2015
- 资助金额:
$ 54.84万 - 项目类别:
Predicting and Preventing Hospital Readmission in Patients with Diabetes and CVD
预测和预防糖尿病和心血管疾病患者再入院
- 批准号:
9206498 - 财政年份:2015
- 资助金额:
$ 54.84万 - 项目类别:
相似海外基金
A self-guided and monitored innovative AI-driven parental support intervention (mobile app), for families caring for a young one that self-harms: feasibility study
一种自我指导和监控的创新型人工智能驱动的家长支持干预措施(移动应用程序),适用于照顾自残儿童的家庭:可行性研究
- 批准号:
10101171 - 财政年份:2024
- 资助金额:
$ 54.84万 - 项目类别:
Collaborative R&D
Caring Communities 1800-present: Rethinking Children's Social Care
关爱社区 1800 年至今:重新思考儿童的社会关怀
- 批准号:
MR/X034968/1 - 财政年份:2024
- 资助金额:
$ 54.84万 - 项目类别:
Fellowship
Conference: Caring for the Future: Empathy in Engineering Education
会议:关爱未来:工程教育中的同理心
- 批准号:
2418876 - 财政年份:2024
- 资助金额:
$ 54.84万 - 项目类别:
Standard Grant
Who is Caring for the Caregiver? Understanding Quality of Life and Mental Health Outcomes in Caregivers of Persons with Brain Injury
谁在照顾看护者?
- 批准号:
492369 - 财政年份:2023
- 资助金额:
$ 54.84万 - 项目类别:
Operating Grants
When caring ends: Understanding and supporting informal care trajectories
当护理结束时:理解和支持非正式护理轨迹
- 批准号:
LP220100209 - 财政年份:2023
- 资助金额:
$ 54.84万 - 项目类别:
Linkage Projects
Caring for Providers to Improve Patient Experience (CPIPE) Study
关爱医疗服务提供者以改善患者体验 (CPIPE) 研究
- 批准号:
10556284 - 财政年份:2023
- 资助金额:
$ 54.84万 - 项目类别:
Intergenerational conversations in contemporary performance: conflict, caring and the earth crisis
当代表演中的代际对话:冲突、关怀和地球危机
- 批准号:
2887471 - 财政年份:2023
- 资助金额:
$ 54.84万 - 项目类别:
Studentship
Evaluation of the Caring Letters Suicide Prevention Intervention after Removal of an Electronic Health Record Flag for Suicide Risk: An Effectiveness-Implementation Hybrid Type 2 Trial
移除电子健康记录自杀风险标记后关怀信自杀预防干预的评估:有效性-实施混合 2 型试验
- 批准号:
10753299 - 财政年份:2023
- 资助金额:
$ 54.84万 - 项目类别:
Co-creating a new model of long-term care home for older adults experiencing homelessness: Long-term Caring
为无家可归的老年人共同打造长期护理院新模式:长期关怀
- 批准号:
490004 - 财政年份:2023
- 资助金额:
$ 54.84万 - 项目类别:
Operating Grants
Developing cultural competency training for app-based peer supporters caring for Canadian public safety personnel
为照顾加拿大公共安全人员的基于应用程序的同伴支持者开发文化能力培训
- 批准号:
488193 - 财政年份:2023
- 资助金额:
$ 54.84万 - 项目类别:
Operating Grants














{{item.name}}会员




