Pathogenic hotspots illuminate mechanism and therapeutic potential in arrhythmogenic cardiomyopathy
致病热点阐明致心律失常性心肌病的机制和治疗潜力
基本信息
- 批准号:10633507
- 负责人:
- 金额:$ 77.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-05 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:AdultArrhythmiaArrhythmogenic Right Ventricular DysplasiaBindingC-terminalCalciumCardiacCardiac MyocytesCardiomyopathiesCardiovascular systemCell membraneCellsCytoplasmDataDesmosomesDiseaseDominant-Negative MutationEngineeringEvaluationExonsFailureGenesGeneticGenetic TranscriptionGenome engineeringGuide RNAHeart failureIn VitroIndividualInheritedIonsLeftLibrariesMapsMeasuresMembraneMethodsMinorityMolecular AbnormalityMusNonsense-Mediated DecayPathogenicityPathologyPatientsPhenotypePreparationPrevalenceProtein IsoformsRNA BindingRNA Recognition MotifRNA SplicingReagentRoleStructureSystemTechniquesTechnologyTertiary Protein StructureTherapeuticTissuesTranscriptTransgenic OrganismsValidationVariantVentricularWorkarrhythmogenic cardiomyopathyautosomedesigndisease phenotypeengineering designgene interactiongene replacementgene replacement therapygenome editingin vivoinduced pluripotent stem cellinherited cardiomyopathyinnovationnovelnovel therapeuticsoverexpressionplakophilin 2prime editingprospectivesingle-cell RNA sequencingsudden cardiac deaththeoriestherapeutic genome editingtranscriptome sequencing
项目摘要
PROJECT SUMMARY
Recent exponential advancement of genome engineering technology has revived enthusiasm for its
implementation in genetic cardiomyopathies. This is especially promising for arrhythmogenic cardiomyopathy
(ACM), a cause of sudden cardiac death and end stage heart failure. Most early genome engineering therapies
have focused on gene replacement; however, a significant minority of ACM variants likely act via dominant
negative disease mechanisms that will not respond to gene replacement therapy. RNA Binding Motif 20
(RBM20) and plakophilin 2 (PKP2) are genes associated with deadly forms of ACM in which there are both
dominant negative and haploinsufficient pathogenic variants. Variants in these genes cause cardiomyopathy
and arrhythmia by disrupting global cardiomyocyte transcriptional splicing and desmosomal structure,
respectively. hat these variants are clustered in pathogenic hotspots that align to known and novel functional
protein domains, indicating that focused study of these hotspots can illuminate differential disease mechanisms
and potentially reduce the burden of therapeutic design. Our central hypothesis is that variants in pathogenic
hotspots of RBM20 and PKP2 have differential downstream mechanisms that converge on ACM disease
phenotypes, and that these pathogenic hotspots allow the design of a genome engineering strategy to edit
many pathogenic variants with a single reagent. In Aim 1, we will identify haploinsufficient vs. dominant
negative variants in RBM20. We then use high throughput genome engineering techniques to create a library
of these variants in induced pluripotent stem cell cardiomyocytes. We will apply a combination of single cell
library preparation and long read RNAseq to define the downstream consequences of each disease
mechanism on splicing of known and novel RBM20 targets. In Aim 2, we focus on a novel dominant negative
mechanism for C-terminal PKP2 truncating variants in which they lose their plasma membrane localization,
sequestering critical desmosome components in the cytoplasm. We will use variant effect mapping to define
downstream mechanisms of a library of pathogenic PKP2 truncating variants, and will define the role of a novel
PKP2 interactor on PKP2 membrane localization. In Aim 3, we will extend our work showing the feasibility of
single prime editing (PE) reagents for correction of multiple variants in a pathogenic hotspot in vitro: We will
design engineered prime editing (epe)gRNAs with the newest high efficiency PEmax construct for the PKP2 C-
terminus hotspot and dominant negative RBM20 RS domain hotspot in vitro. We will then use innovative
methods to package PEmax in AAVMYO to correct two pathogenic murine Rbm20 RS domain variants in vivo
using the same epegRNA. We will go on to measure the effect of this editing on deep ACM phenotypes. In
summary, this project will capitalize on our identification of pathogenic hotspots in RBM20 and PKP2 to provide
a comprehensive evaluation of variant-level disease mechanism in these genes, and demonstrate the potential
of hotspot directed prime editing as a tractable genome engineering therapeutic.
项目摘要
基因组工程技术的最新指数进步恢复了对其的热情
遗传性心肌病的实施。这对于心律不齐的心肌病特别有希望
(ACM),这是心脏突然死亡和终结阶段心力衰竭的原因。大多数早期基因组工程疗法
专注于基因替代;但是,很少有ACM变体可能通过主导作用
不对基因替代疗法反应的阴性疾病机制。 RNA结合基序20
(RBM20)和plakophilin 2(PKP2)是与致命形式的ACM相关的基因
致病性变异的主要阴性和单倍损害。这些基因的变体引起心肌病
通过破坏全球心肌细胞的转录剪接和脱染色体结构,而心律不齐,
分别。帽子这些变体聚集在与已知和新功能相符的致病热点中
蛋白质结构域,表明对这些热点的重点研究可以照亮差异疾病机制
并有可能减轻治疗设计的负担。我们的中心假设是致病性的变体
RBM20和PKP2的热点具有差异下游机制,这些机制会融合ACM疾病
表型,这些病原热点允许设计基因组工程策略来编辑
许多带有单个试剂的致病变体。在AIM 1中,我们将确定单倍宽松与主导地位
RBM20中的负变体。然后,我们使用高吞吐量基因组工程技术来创建库
在诱导多能干细胞心肌细胞中的这些变体中。我们将使用单个单元的组合
图书馆的准备和长期读取RNASEQ,以定义每种疾病的下游后果
已知和新型RBM20目标剪接的机制。在AIM 2中,我们专注于新颖的负面负面
C末端PKP2截断变体的机制,其中失去了质膜定位,
隔离细胞质中的临界朝向小体成分。我们将使用变体效果映射来定义
致病性PKP2截断变体库的下游机制,并将定义新颖的作用
PKP2相互作用器在PKP2膜定位上。在AIM 3中,我们将扩展工作表明的可行性
在体外,用于校正多种变体的单次序编(PE)试剂:我们将
设计工程的Prime编辑(EPE)GRNA具有最新的PKP2 C-最新高效率Pemax结构
体外末端热点和主要的负RB20 RS域热点。然后,我们将使用创新
在Aavmyo中打包Pemax的方法以纠正体内的两个致病鼠RBM20 RS域变体
使用相同的Epegrna。我们将继续衡量该编辑对深度ACM表型的影响。在
总而言之,该项目将利用我们在RBM20和PKP2中对病原热点的识别以提供
对这些基因中变异级疾病机制的全面评估,并证明了潜力
Hotspot将Prime编辑定向为一种可拖动的基因组工程治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victoria Parikh其他文献
Victoria Parikh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victoria Parikh', 18)}}的其他基金
The Role of RBM20 Sequence and Expression in Dilated Cardiomyopathies
RBM20 序列和表达在扩张型心肌病中的作用
- 批准号:
10670204 - 财政年份:2019
- 资助金额:
$ 77.18万 - 项目类别:
The Role of RBM20 Sequence and Expression in Dilated Cardiomyopathies
RBM20 序列和表达在扩张型心肌病中的作用
- 批准号:
10463600 - 财政年份:2019
- 资助金额:
$ 77.18万 - 项目类别:
The Role of RBM20 Sequence and Expression in Dilated Cardiomyopathies
RBM20 序列和表达在扩张型心肌病中的作用
- 批准号:
10227037 - 财政年份:2019
- 资助金额:
$ 77.18万 - 项目类别:
An Essential Role for miR-29b in the Protective Effect of Apelin in Diabetic Vascular Stiffness
miR-29b 在 Apelin 对糖尿病血管僵硬的保护作用中发挥重要作用
- 批准号:
9190204 - 财政年份:2017
- 资助金额:
$ 77.18万 - 项目类别:
相似国自然基金
TMEM30a在致心律不齐性右心室心肌病中的作用及机制研究
- 批准号:82100367
- 批准年份:2021
- 资助金额:20 万元
- 项目类别:青年科学基金项目
人参抗心律不齐活性成分及其构效关系的研究*3
- 批准号:28970070
- 批准年份:1989
- 资助金额:2.5 万元
- 项目类别:面上项目
相似海外基金
Partial and Controlled Depletion of SR Calcium by RyR Agonists Prevents Calcium-dependent Arrhythmias
RyR 激动剂部分且受控地消耗 SR 钙可预防钙依赖性心律失常
- 批准号:
10577630 - 财政年份:2023
- 资助金额:
$ 77.18万 - 项目类别:
Rational Design from Cryo-EM Structures of High-Affinity Ryanodine Receptor Ligands Based on Natural Peptides
基于天然肽的高亲和力兰尼定受体配体的冷冻电镜结构的合理设计
- 批准号:
10729564 - 财政年份:2023
- 资助金额:
$ 77.18万 - 项目类别:
Non-junctional roles of desmosome proteins in the pathogenesis of arrhythmogenic cardiomyopathy
桥粒蛋白在致心律失常性心肌病发病机制中的非连接作用
- 批准号:
10705361 - 财政年份:2022
- 资助金额:
$ 77.18万 - 项目类别:
Engineered Human Heart Slice for Testing Drug-Induced Arrhythmia
用于测试药物引起的心律失常的工程人体心脏切片
- 批准号:
10616266 - 财政年份:2020
- 资助金额:
$ 77.18万 - 项目类别:
Pilot Randomized Trial with Flecainide in ARVC Patients
ARVC 患者使用氟卡尼的随机试验
- 批准号:
9754242 - 财政年份:2018
- 资助金额:
$ 77.18万 - 项目类别: