SmartAD for Intelligent Alzheimer’s Disease(AD) Personalized Combination Therapy

SmartAD 智能阿尔茨海默病 (AD) 个性化联合治疗

基本信息

  • 批准号:
    10670481
  • 负责人:
  • 金额:
    $ 39.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Alzheimer’s Disease (AD) is a complex neurodegenerative disease that causes progressive memory loss and cognitive impairment. While current treatments have shown some amelioration of symptoms, the effects have been transient and limited to a small percentage of AD patients. Moreover, disease-modifying drugs based on current understanding of disease mechanisms have all shown negative results in clinical trials. Part of the failure is due to the heterogeneity in the disease mechanism, of which we do not yet have a clear understanding. Increasing evidence has indicated that medical comorbidities share common disease pathways with AD, and the medications used for these diseases can also alter the cognitive functions of AD patients. However, limited studies have assessed combinations of these medications as treatments for AD with common comorbidities. Thus, the goal of this proposal is to develop artificial intelligence (AI) analytics models and a SmartAD app to facilitate cognitive function evaluation and personalized treatment plans for AD patients with the most common comorbidities, such as cardiovascular diseases (CVD)/hypertension (HTN), diabetes mellitus (DM), and depression (DPN). To achieve our goal, we will carry out retrospective analysis of observational clinical data collected by the University of Pittsburgh Alzheimer’s Disease Research Center (ADRC). First, we will statistically investigate the effects of different comorbidity medications when used in combination with anti-AD medications on the trajectory of cognitive decline (Aim1). By identifying specific drug combination(s) that have a synergistic effect against cognitive decline, we will then study the underlying mechanisms using molecular systems pharmacology methods and validate the findings using in vitro iPSC and other bioassays as needed (Aim2). Subsequently, we will build a clinical decision support system, SmartAD, that will facilitate cognitive function evaluation and individualized treatment for AD patients with these common comorbidities. We will build a Bayesian Network model that can predict patient-tailored disease progression and treatment information provided by ADRC at the University of Pittsburgh (Aims 3 & 4). This model will be intelligently machine-learned and trained on the ADRC dataset using causal machine-learning approaches. Methodologies of decision theory will then be applied to search for a treatment combination that leads to the optimal outcome for that patient. Finally, we will use external medical data from AD Neuroimaging Initiative (ADNI) and National Alzheimer’s Coordinating Center (NACC) for model systems test validation (Aims 3 and 4). Taken all together, these studies will contribute to the discovery of novel drug combinations for AD patients with comorbidities and develop SmartAD as an intelligent clinical decision support system that can facilitate paperless cognitive function evaluation, progression prediction, as well as assist optimal personalized medication for Alzheimer’s patients.
阿尔茨海默病(AD)是一种复杂的神经退行性疾病,可导致进行性记忆丧失和记忆力减退

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiang-Qun Xie其他文献

Xiang-Qun Xie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiang-Qun Xie', 18)}}的其他基金

SmartAD for Intelligent Alzheimer’s Disease(AD) Personalized Combination Therapy
SmartAD 智能阿尔茨海默病 (AD) 个性化联合治疗
  • 批准号:
    10701069
  • 财政年份:
    2022
  • 资助金额:
    $ 39.54万
  • 项目类别:
Cannabinoid CB2 Receptor Structure and Allosteric Modulators
大麻素 CB2 受体结构和变构调节剂
  • 批准号:
    10297210
  • 财政年份:
    2021
  • 资助金额:
    $ 39.54万
  • 项目类别:
Cannabinoid CB2 Receptor Structure and Allosteric Modulators
大麻素 CB2 受体结构和变构调节剂
  • 批准号:
    10448397
  • 财政年份:
    2021
  • 资助金额:
    $ 39.54万
  • 项目类别:
Cannabinoid CB2 Receptor Structure and Allosteric Modulators
大麻素 CB2 受体结构和变构调节剂
  • 批准号:
    10612431
  • 财政年份:
    2021
  • 资助金额:
    $ 39.54万
  • 项目类别:
Screen and Design p18 Chemical Probes for Hematopoietic Stem Cell Self-Renewal
用于造血干细胞自我更新的 p18 化学探针的筛选和设计
  • 批准号:
    8174548
  • 财政年份:
    2011
  • 资助金额:
    $ 39.54万
  • 项目类别:
CHEMINFORMATICS DATA-MINING FOR MOLECULAR FINGERPRINT CALCULATION
用于分子指纹计算的化学信息学数据挖掘
  • 批准号:
    8364201
  • 财政年份:
    2011
  • 资助金额:
    $ 39.54万
  • 项目类别:
Screen and Design p18 Chemical Probes for Hematopoietic Stem Cell Self-Renewal
用于造血干细胞自我更新的 p18 化学探针的筛选和设计
  • 批准号:
    8284383
  • 财政年份:
    2011
  • 资助金额:
    $ 39.54万
  • 项目类别:
CHEMINFORMATICS DATA-MINING FOR MOLECULAR FINGERPRINT CALCULATION
用于分子指纹计算的化学信息学数据挖掘
  • 批准号:
    8171779
  • 财政年份:
    2010
  • 资助金额:
    $ 39.54万
  • 项目类别:
Structure/Function of the CB2 Receptor Binding and G-protein Recognition Pockets
CB2 受体结合和 G 蛋白识别袋的结构/功能
  • 批准号:
    8248180
  • 财政年份:
    2010
  • 资助金额:
    $ 39.54万
  • 项目类别:
Structure/Function of the CB2 Receptor Binding and G-protein Recognition Pockets
CB2 受体结合和 G 蛋白识别袋的结构/功能
  • 批准号:
    8445348
  • 财政年份:
    2010
  • 资助金额:
    $ 39.54万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了