Magnetic Particle Imaging (MPI) for Imaging and Magnetothermal Therapy of Brain Tumors

用于脑肿瘤成像和磁热治疗的磁粒子成像 (MPI)

基本信息

  • 批准号:
    10668542
  • 负责人:
  • 金额:
    $ 24.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-16 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Project Summary: This proposal describes a five-year research and career development program to prepare Dr. Hamed Arami for a career as an independent investigator. This program will build upon Dr. Arami’s multidisciplinary background as a bioengineer scientist, trained in nanomedicine and basic cancer imaging, by providing expertise in brain cancer biology and image-guided therapy of brain tumors using Magnetic Particle Imaging (MPI). The PI will be mentored at Stanford Medical School by Drs. Sanjiv S. Gambhir (Main mentor, basic cancer biology, cancer pathology and cancer nanotechnology), Heike Daldrup-Link (co-mentor, magnetic nanomedicine, imaging and therapeutics), Max Wintermark (co-mentor, neuroimaging and brain MPI), Melanie Hayden (co-mentor, neurosurgery and neurology) and Bob Sinclair (co-mentor, nanomaterials characterization). Treatment of malignant primary brain tumors particularly glioblastoma multiforme (GBM) is challenging because of GBM resistant to chemotherapy and radiotherapy. Also, there are different types of GBM tumors that are not operable due to their locations in the brain (e.g. deep brain regions). In addition, routine GBM imaging in clinics are based on using gadolinium-based magnetic resonance imaging contrast agents. However, using these gadolinium-based contrast agents raises major concerns for GBM patients suffering from chronic kidney disease, which can be resolved by using nanoparticle contrast agents that do not show any renal clearance due to their larger size. The overall goal of the proposed research is to use MPI as a two-armed and high-resolution approach for safer imaging and magnetothermal therapy of the GBM. Four types of brain tumors with different levels of aggressiveness will be studied to identify the feasibility of the proposed method in different brain tumor microenvironments. Recently, I developed methods for tuning iron oxide nanoparticles (NPs) to generate high resolution (i.e. ~600 µm) MPI images with ultra-high contrast agent mass sensitivity of less than ~550pg Fe/µL. I have used MPI for three-dimensional targeted imaging of the U87 brain tumors in mice after intravenous injection of these NPs. Additionally, in separate studies, I demonstrated the feasibility of the MPI for selective magnetothermal therapy of the U87 tumors, when NPs were directly injected into tumors. In this project, I will first evaluate MPI and heat generation efficiency of the NPs at different brain depths to further identify ideal NPs design and imaging criteria for general brain tumor imaging or local magnetothermal therapy with MPI (Aim 1). Then, I will evaluate MPI for targeted 3D imaging of four different types of intracranially implanted brain tumors after intravenous injection of the nanoparticles, followed by nanoparticle biodistribution studies (Aim 2). Finally, I will use intratumoral injection of my tumor-penetrating NPs for MPI-guided magnetothermal therapy of the deep brain tumors (representative models for inoperable GBM), followed by in-depth survival and neuropathological studies (Aim 3). Iron oxide nanoparticles have been approved by FDA for several clinical applications and we hope that this method will ultimately find applications to many other types of solid tumors.
项目概述:本提案描述了一个为期五年的研究和职业发展计划, 博士Hamed Arami作为独立调查员的职业生涯。该计划将建立在Arami博士的基础上 作为一名生物工程科学家,具有多学科背景,接受过纳米医学和基本癌症成像方面的培训, 提供脑癌生物学和使用磁性粒子的脑肿瘤图像引导治疗的专业知识 成像(MPI)。PI将在斯坦福大学医学院接受Sanjiv S. Gambhir(主要导师, 基础癌症生物学,癌症病理学和癌症纳米技术),海克Daldrup-Link(共同导师,磁 纳米医学,成像和治疗学),Max Wintermark(共同导师,神经成像和脑MPI),Melanie Hayden(共同导师,神经外科和神经病学)和Bob Sinclair(共同导师,纳米材料表征)。 恶性原发性脑肿瘤,特别是多形性胶质母细胞瘤(GBM)的治疗具有挑战性,因为 GBM对化疗和放疗的抵抗。此外,还有不同类型的GBM肿瘤, 由于它们在大脑中的位置(例如,脑深部区域)而可操作。此外,临床常规GBM成像 基于使用钆基磁共振成像造影剂。然而,使用这些 钆基造影剂引起了患有慢性肾脏病的GBM患者的主要担忧 疾病,这可以通过使用纳米颗粒造影剂解决,这些造影剂不显示任何肾脏清除, 到他们更大的尺寸。所提出的研究的总体目标是使用MPI作为双臂和高分辨率 更安全的成像和GBM的磁热疗法的方法。四种不同类型的脑肿瘤 将研究攻击性水平以确定所提出的方法在不同脑肿瘤中的可行性 微环境最近,我开发了调整氧化铁纳米颗粒(NPs)的方法, 分辨率(即~600 µm)的MPI图像,超高造影剂质量灵敏度小于~ 550 pg Fe/µL。 我已经使用MPI对静脉注射后的小鼠U87脑肿瘤进行了三维靶向成像。 注射这些NP。此外,在单独的研究中,我证明了MPI用于选择性 当NP被直接注射到肿瘤中时,U87肿瘤的磁热疗法。在这个项目中,我将 首先评估在不同脑深度的NP的MPI和产热效率,以进一步识别理想的NP 一般脑肿瘤成像或MPI局部磁热治疗的设计和成像标准(目标1)。 然后,我将评估MPI对四种不同类型颅内植入脑肿瘤的靶向3D成像 静脉注射纳米颗粒后,接着进行纳米颗粒生物分布研究(目的2)。最后, 我将使用肿瘤内注射我的肿瘤穿透纳米粒子的MPI引导下的深部磁热疗法 脑肿瘤(不能手术的GBM的代表性模型),然后是深度生存和神经病理学 研究(目标3)。氧化铁纳米颗粒已被FDA批准用于几种临床应用, 希望这种方法最终能应用于许多其他类型的实体瘤。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hamed Arami其他文献

Hamed Arami的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hamed Arami', 18)}}的其他基金

Magnetic Particle Imaging (MPI) for Imaging and Magnetothermal Therapy of Brain Tumors
用于脑肿瘤成像和磁热治疗的磁粒子成像 (MPI)
  • 批准号:
    9891731
  • 财政年份:
    2020
  • 资助金额:
    $ 24.9万
  • 项目类别:
Magnetic Particle Imaging (MPI) for Imaging and Magnetothermal Therapy of Brain Tumors
用于脑肿瘤成像和磁热治疗的磁粒子成像 (MPI)
  • 批准号:
    10133006
  • 财政年份:
    2020
  • 资助金额:
    $ 24.9万
  • 项目类别:

相似海外基金

Metachronous synergistic effects of preoperative viral therapy and postoperative adjuvant immunotherapy via long-term antitumor immunity
术前病毒治疗和术后辅助免疫治疗通过长期抗肿瘤免疫产生异时协同效应
  • 批准号:
    23K08213
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Improving the therapeutic immunity of cancer vaccine with multi-adjuvant polymeric nanoparticles
多佐剂聚合物纳米粒子提高癌症疫苗的治疗免疫力
  • 批准号:
    2881726
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Studentship
Evaluation of the Sensitivity to Endocrine Therapy (SET ER/PR) Assay to predict benefit from extended duration of adjuvant endocrine therapy in the NSABP B-42 trial
NSABP B-42 试验中内分泌治疗敏感性 (SET ER/PR) 测定的评估,用于预测延长辅助内分泌治疗持续时间的益处
  • 批准号:
    10722146
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Countering sympathetic vasoconstriction during skeletal muscle exercise as an adjuvant therapy for DMD
骨骼肌运动期间对抗交感血管收缩作为 DMD 的辅助治疗
  • 批准号:
    10735090
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
  • 批准号:
    10933287
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
DEVELOPMENT OF SAS A SYNTHETIC AS01-LIKE ADJUVANT SYSTEM FOR INFLUENZA VACCINES
流感疫苗类 AS01 合成佐剂系统 SAS 的开发
  • 批准号:
    10935776
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
DEVELOPMENT OF SMALL-MOLECULE DUAL ADJUVANT SYSTEM FOR INFLUENZA VIRUS VACCINE
流感病毒疫苗小分子双佐剂体系的研制
  • 批准号:
    10935796
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
A GLYCOLIPID ADJUVANT 7DW8-5 FOR MALARIA VACCINES
用于疟疾疫苗的糖脂佐剂 7DW8-5
  • 批准号:
    10935775
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Adjuvant strategies for universal and multiseasonal influenza vaccine candidates in the context of pre-existing immunity
在已有免疫力的情况下通用和多季节流感候选疫苗的辅助策略
  • 批准号:
    10649041
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Adjuvant Photodynamic Therapy to Reduce Bacterial Bioburden in High-Energy Contaminated Open Fractures
辅助光动力疗法可减少高能污染开放性骨折中的细菌生物负载
  • 批准号:
    10735964
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了