Investigating the molecular mechanisms of growth in GNAS mutant pancreatic cancer.
研究 GNAS 突变型胰腺癌生长的分子机制。
基本信息
- 批准号:10666643
- 负责人:
- 金额:$ 36.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:Animal Cancer ModelAnimalsBiochemical PathwayBioenergeticsBiologyBranched-Chain Amino AcidsCREB1 geneCancer EtiologyCell LineCellsCessation of lifeCitric Acid CycleColonComplexCyclic AMPCyclic AMP-Dependent Protein KinasesDataDependenceDetectionDiseaseDoxycyclineEnzymesFatty AcidsFoundationsGTP-Binding Protein alpha Subunits, GsGTP-Binding ProteinsGene ExpressionGenesGeneticGenetic EngineeringGenetic TranscriptionGenetically Engineered MouseGenotypeGnas proteinGoalsGrowthHeterogeneityHistologicHumanIntestinesKRAS oncogenesisKRAS2 geneLabelLesionLipidsMaintenanceMalignant NeoplasmsMalignant neoplasm of pancreasMediatingMetabolicMetabolic PathwayMethodsMicroscopyMitochondriaModelingMolecularMolecular ProfilingMucinousMucinous NeoplasmMultienzyme ComplexesMusMutateMutationNADHNeoplasmsNuclear TranslocationOncogenicOrganoidsOther GeneticsOxidative PhosphorylationOxidoreductasePancreasPancreatic Ductal AdenocarcinomaPapillaryPathway interactionsPhosphorylationPituitary GlandProliferatingProtein IsoformsPublishingRecurrenceRegulationResearchRespirationRoleSamplingSeriesSignal TransductionSourceSpecimenStomachSystemTP53 geneTranscription CoactivatorTranscriptional ActivationTumor Suppressor ProteinsUnited StatesUp-RegulationWorkbiliary tractcancer cellclinically relevantfatty acid oxidationgain of function mutationimprovedinhibitormetabolic phenotypemouse modelmutantnovelpancreatic cancer patientspancreatic neoplasmpatient derived xenograft modelpre-clinicalpreventprogramsprotein activationrespiratoryrestraintsalt-inducible kinasetooltranscriptomicstreatment responsetreatment strategytumortumor growthtumor progression
项目摘要
PROJECT SUMMARY
Pancreatic ductal adenocarcinoma (PDA) is the fourth leading cause of cancer death in the United States with
five-year survival after detection is less than 10%. The subset of PDA arises from Intraductal papillary mucinous
neoplasm (IPMNs) precursor lesions are distinguished by recurrent activating mutations in GNAS, that encodes
G-protein Gαs, and induces cyclic-AMP (cAMP) signaling. GNAS is mutationally activated and amplified
pancreatic and many other human tumors, yet its oncogenic functions remain unclear. Therefore, understanding
the function of mutant GNAS will provide disease mechanisms and give opportunities to treat PDA even in their
early stages. To understand the function of oncogenic GNAS we established a doxycycline-tunable mouse model
and showed that mutant GNAS cooperates with oncogenic KRAS to initiate IPMNs that progress to invasive
PDA upon p53 loss. GNAS remains critical for the maintenance of established tumors, via a protein kinase A
(PKA)-dependent network and resulting inhibition of salt-inducible kinases (SIK1-3). We demonstrated that this
network prominently reprograms metabolic pathways which are potential alternative sources of TCA cycle
metabolites, respiratory substrates (NADH) and fatty acid intermediates that can support the growth of GNAS
mutant tumors. Importantly, GNAS-mutant cancer cells are specifically sensitive to the inhibition of these
pathways compared to GNAS-wt tumors. These results establish mutant GNAS as a novel tumor maintenance
driver, uncover the underlying PKA-dependent program, establish SIKs as major tumor suppressors, and
demonstrate unanticipated metabolic heterogeneity fueling subsets of pancreatic cancer. Based on our
published and unpublished supporting data, the overarching goal of this proposal is to understand the roles of
critical downstream targets of GNAS-PKA signaling that control the expression of proliferation and metabolic
genes. Our research will also illuminate how mutant GNAS regulated expression of a keto dehydrogenase
generate biosynthetic and bioenergetic intermediates to support tumor growth. Finally, our study will interrogate
the regulation of respiratory activity and its requirement in GNAS mutant pancreatic cancer. This study will
leverage advanced methods and unique tools, including global transcriptomic analysis and isotopomer-based
metabolic profiling in genetically defined mouse and human organoid systems, preclinical pancreatic cancer
animal models, relevant patient-derived xenograft systems and primary samples. Our research will provide
understanding of the unique biology of mutant GNAS and points out targetable vulnerabilities in genetic subsets
of pancreatic tumors.
项目摘要
胰腺导管腺癌(PDA)是美国癌症死亡的第四个主要原因
检测后的五年生存率小于10%。 PDA的子集来自导管内乳头状粘液
肿瘤(IPMN)前体病变通过GNA中的复发激活突变来区分,该突变是编码的
G蛋白GαS,并诱导环状AMP(CAMP)信号传导。 GNA是突变激活和放大器的
胰腺和许多其他人类肿瘤,但其致癌功能尚不清楚。因此,理解
突变GNA的功能将提供疾病机制,并为治疗PDA提供机会
早期阶段。为了了解致癌GNA的功能,我们建立了一种强力霉素可调的小鼠模型
并表明突变GNA与致癌KRAS合作,以启动发展为侵入性的IPMN
P53损失时PDA。 GNA对于通过蛋白激酶A维持已建立的肿瘤仍然至关重要
(PKA)依赖性网络,并抑制盐诱导激酶(SIK1-3)。我们证明了这一点
网络突出地重新编程代谢途径,这是TCA循环的潜在替代来源
代谢物,呼吸底物(NADH)和脂肪酸中间体可以支持GNA的生长
突变肿瘤。重要的是,GNA突变癌细胞对抑制特异性敏感
与GNAS-WT肿瘤相比。这些结果将突变GNA作为一种新型的肿瘤维持
驾驶员,发现基本的依赖PKA的程序,将锡克斯建立为主要肿瘤补充剂,并且
证明意外的代谢异质性加油胰腺癌子集。基于我们
该提案的总体目标是发布和未发表的支持数据,是了解
控制增殖和代谢表达的GNAS-PKA信号的临界下游靶标
基因。我们的研究还将阐明突变GNA如何调节酮脱氢酶的表达
产生生物合成和生物能中间体以支持肿瘤生长。最后,我们的研究将询问
调节呼吸活性及其在GNA突变胰腺癌中的需求。这项研究会
利用高级方法和独特的工具,包括全球转录组分析和基于同位素的分析
一般定义的小鼠和人体器官系统中的代谢分析,临床前胰腺癌
动物模型,相关的患者衍生的定义系统和主要样本。我们的研究将提供
了解突变GNA的独特生物学,并指出遗传子集中的可靶向漏洞
胰腺肿瘤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krushna Chandra Patra其他文献
Krushna Chandra Patra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Krushna Chandra Patra', 18)}}的其他基金
Investigation of the mitochondrial function in GNAS mutant neoplasms
GNAS 突变肿瘤中线粒体功能的研究
- 批准号:
10605302 - 财政年份:2021
- 资助金额:
$ 36.32万 - 项目类别:
Investigation of the mitochondrial function in GNAS mutant neoplasms
GNAS 突变肿瘤中线粒体功能的研究
- 批准号:
9721914 - 财政年份:2021
- 资助金额:
$ 36.32万 - 项目类别:
Investigation of the mitochondrial function in GNAS mutant neoplasms
GNAS 突变肿瘤中线粒体功能的研究
- 批准号:
10396962 - 财政年份:2021
- 资助金额:
$ 36.32万 - 项目类别:
相似国自然基金
基于扁颅蝠类群系统解析哺乳动物脑容量适应性减小的演化机制
- 批准号:32330014
- 批准年份:2023
- 资助金额:215 万元
- 项目类别:重点项目
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于基因组数据自动化分析为后生动物类群大规模开发扩增子捕获探针的实现
- 批准号:32370477
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
大型野生动物对秦岭山地森林林下植物物种组成和多样性的影响及作用机制
- 批准号:32371605
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
闸坝建设对河口大型底栖动物功能与栖息地演变的影响-以粤西鉴江口为例
- 批准号:42306159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding CDK1 Function and Cancer Vulnerabilities
了解 CDK1 功能和癌症脆弱性
- 批准号:
10736617 - 财政年份:2023
- 资助金额:
$ 36.32万 - 项目类别:
Opaganib as a Medical Countermeasure for Gastrointestinal Acute Radiation Syndrome
奥帕加尼作为胃肠道急性辐射综合症的医学对策
- 批准号:
10758903 - 财政年份:2023
- 资助金额:
$ 36.32万 - 项目类别:
Targeting MARK2-HDAC signaling to overcome paclitaxel resistance in pancreatic cancer
靶向 MARK2-HDAC 信号传导以克服胰腺癌中的紫杉醇耐药性
- 批准号:
10518249 - 财政年份:2022
- 资助金额:
$ 36.32万 - 项目类别:
Mechanisms and consequences of sickle cell disease-induced cycling in hematopoietic stem cells
镰状细胞病诱导造血干细胞循环的机制和后果
- 批准号:
10464657 - 财政年份:2022
- 资助金额:
$ 36.32万 - 项目类别:
Role of PPM1D and PPM1D mutations in hematopoiesis and response to stress
PPM1D 和 PPM1D 突变在造血和应激反应中的作用
- 批准号:
10678835 - 财政年份:2022
- 资助金额:
$ 36.32万 - 项目类别: