Development of a multi-modal targeted nanotherapeutic to prevent restenosis in an atherosclerotic environment
开发多模式靶向纳米治疗药物以预防动脉粥样硬化环境中的再狭窄
基本信息
- 批准号:10667411
- 负责人:
- 金额:$ 62.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-18 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAntioxidantsApolipoprotein EArterial Fatty StreakArterial InjuryArteriesAscorbic AcidAtherosclerosisBalloon AngioplastyBindingBiodistributionBiomedical EngineeringBloodBlood VesselsCell ProliferationCessation of lifeClinicalCollagenDevelopmentDevicesDiseaseDoseDrug KineticsElementsEndothelial CellsEndotheliumEnvironmentExposure toFamilial HypercholesterolemiaFamily suidaeFundingGoalsHealthHumanHyperplasiaInjectionsInjuryInterventionInvestigational TherapiesLaboratoriesModelingMorbidity - disease rateNitric OxideOxidative StressPeptidesPharmaceutical PreparationsPositioning AttributePropertyRattusResearchSafetySecondary toSiteSpecificityStentsTailTestingTherapeuticThinnessThrombosisTimeUnited StatesUnited States National Institutes of HealthUrineVascularizationVeinsVisionbiomaterial compatibilityclinical translationefficacy evaluationfirst-in-humanimprovedinjuredinnovationinterestintravenous administrationmortalitymultimodalitynanofibernanotherapeuticnew technologynovelpeptide amphiphilesporcine modelpre-Investigational New Drug meetingpre-clinicalpreventprofessorrestenosisrestorationself assemblysuccesstargeted treatmenttechnology platformtherapeutic targetvascular injury
项目摘要
PROJECT SUMMARY
Vascular interventions used to treat severe atherosclerosis often fail due to the development of arterial
restenosis secondary to neointimal hyperplasia. In the United States, the only therapies approved for use in
humans aimed at reducing restenosis are drug-eluting stents and balloons. However, these drug-eluting
devices have proven to be problematic with respect to re-endothelialization, thrombosis, and death, and have
led to the release of FDA warnings in 2019. Thus, there is a great need for new technology that will promote
restoration of a healthy vasculature following revascularization. The overall goal of this proposal is to develop
a novel, targeted, drug-releasing nanotherapeutic that will be administered intravenously yet localize
specifically to the site of injury to prevent neointimal hyperplasia. Dr. Kibbe and Professor Stupp’s laboratories,
through funding from a National Institutes of Health Bioengineering Research Partnership R01, have
developed a highly innovative targeted nanotherapeutic comprised of peptide amphiphile (PA) molecules that
self-assemble into three-dimensional nanofibers and are covalently modified to include a collagen-binding
peptide (CBP) that targets the nanofiber to collagen. Nitric oxide (NO) was incorporated as the therapeutic
given its many vasoprotective properties that promote vascular health and inhibit neointimal hyperplasia. Our
laboratories demonstrated that this NO-releasing targeted nanofiber is biocompatible, specifically targets the
site of vascular injury following tail vein injection and inhibits the development of neointimal hyperplasia at 2
weeks—an effect that remains durable out to 7 months in healthy rats. With the success of these studies, it is
time to advance this research to the next stage required for ultimate clinical translation. In humans, vascular
interventions are performed in the setting of atherosclerosis with its associated oxidative stress. Thus, we aim
to advance the technology platform beyond what we have already developed by incorporating additional
targeting moieties and therapeutics that are sensitive to the atherosclerotic milieu. We hypothesize that our
multi-modal nanotherapeutic will target vascular injury and prevent restenosis at the site of intervention in an
atherosclerotic environment. To investigate this hypothesis, we propose the following specific aims: 1)
Develop and evaluate a targeted nanofiber with specificity for the site of arterial injury in atherosclerotic rat
models; 2) Investigate the safety, efficacy and biodistribution of a multi-modal therapeutic targeted nanofiber
platform at inhibiting neointimal hyperplasia following arterial injury in atherosclerotic rat models; and 3)
Evaluate the safety and efficacy of the multi-modal targeted nanofiber platform at preventing neointimal
hyperplasia and restenosis in a preclinical atherosclerotic swine model of arterial balloon injury. Completion of
these aims will result in the development of a multi-modal targeted therapeutic nanofiber platform that will
prevent restenosis following vascular interventions in an atherosclerotic environment. Further, completion of
these studies will position us to start pre-IND meetings with the FDA to begin first-in-human testing.
项目总结
用于治疗严重动脉粥样硬化的血管介入治疗往往由于动脉的发展而失败。
继发于新生内膜增生的再狭窄。在美国,唯一被批准用于治疗的疗法
旨在减少再狭窄的人类是药物洗脱支架和气球。然而,这些药物洗脱
设备已被证明在再内皮化、血栓形成和死亡方面存在问题,并且
导致FDA在2019年发布警告。因此,非常需要新的技术来促进
血运重建后恢复健康的血管系统。这项提议的总体目标是发展
一种新型、靶向、药物释放的纳米疗法,将通过静脉注射进行局部给药
具体到损伤部位,防止新生内膜增生。Kibbe博士和Stupp教授的实验室
通过美国国立卫生研究院生物工程研究伙伴关系R01的资助,
开发了一种高度创新的靶向纳米疗法,由多肽两亲性(PA)分子组成,
自组装成三维纳米纤维,并被共价修饰以包括胶原结合
以纳米纤维为靶点的胶原蛋白多肽(CBP)。一氧化氮(NO)作为治疗性药物。
鉴于它的许多血管保护特性,促进血管健康和抑制新生内膜增生。我们的
实验室证明,这种不释放NO的靶向纳米纤维具有生物相容性,特别针对
尾静脉注射后血管损伤的部位和抑制2小时新生内膜增生的发展
几周--对健康的老鼠来说,这种影响持续了7个月。随着这些研究的成功,它是
将这项研究推进到最终临床翻译所需的下一阶段的时间。在人类中,血管
在动脉粥样硬化及其相关的氧化应激的背景下进行干预。因此,我们的目标是
通过整合其他技术,使技术平台超越我们已开发的平台
针对对动脉粥样硬化环境敏感的部分和治疗药物。我们假设我们的
多模式纳米治疗将靶向血管损伤并防止介入部位的再狭窄
动脉粥样硬化环境。为了研究这一假设,我们提出了以下具体目标:1)
动脉粥样硬化大鼠动脉损伤部位特异性靶向纳米纤维的研制与评价
模型;2)研究多模式靶向治疗纳米纤维的安全性、有效性和生物分布
抑制动脉粥样硬化模型大鼠动脉损伤后新生内膜增生的平台;3)
多模靶向纳米纤维平台预防新生内膜的安全性和有效性评价
动脉球囊损伤的临床前动脉粥样硬化猪模型中的增殖和再狭窄。完成
这些目标将导致多模式靶向治疗纳米纤维平台的开发,该平台将
在动脉粥样硬化环境中防止血管干预后的再狭窄。此外,完成
这些研究将使我们能够开始与FDA的IND前会议,开始第一次人体试验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melina Rae Kibbe其他文献
Melina Rae Kibbe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melina Rae Kibbe', 18)}}的其他基金
Development of a multi-modal targeted nanotherapeutic to prevent restenosis in an atherosclerotic environment
开发多模式靶向纳米治疗药物以预防动脉粥样硬化环境中的再狭窄
- 批准号:
10364365 - 财政年份:2022
- 资助金额:
$ 62.61万 - 项目类别:
Novel in situ custom biodegradable drug-eluting stents for endovascular surgery
用于血管内手术的新型原位定制可生物降解药物洗脱支架
- 批准号:
9892106 - 财政年份:2020
- 资助金额:
$ 62.61万 - 项目类别:
A Novel Endovascular Approach to Remove Atherosclerotic Plaque Lesions In Situ
一种原位去除动脉粥样硬化斑块病变的新型血管内方法
- 批准号:
10084300 - 财政年份:2019
- 资助金额:
$ 62.61万 - 项目类别:
A Novel Endovascular Approach to Remove Atherosclerotic Plaque Lesions In Situ
一种原位去除动脉粥样硬化斑块病变的新型血管内方法
- 批准号:
10577344 - 财政年份:2019
- 资助金额:
$ 62.61万 - 项目类别:
Bioengineering Catalytically Active Grafts for Vascular Surgery
用于血管手术的生物工程催化活性移植物
- 批准号:
8737475 - 财政年份:2014
- 资助金额:
$ 62.61万 - 项目类别:
Bioengineering Catalytically Active Grafts for Vascular Surgery
用于血管手术的生物工程催化活性移植物
- 批准号:
8967095 - 财政年份:2014
- 资助金额:
$ 62.61万 - 项目类别:
Bioengineering Catalytically Active Grafts for Vascular Surgery
用于血管手术的生物工程催化活性移植物
- 批准号:
9794740 - 财政年份:2014
- 资助金额:
$ 62.61万 - 项目类别:
Bioengineering Catalytically Active Grafts for Vascular Surgery
用于血管手术的生物工程催化活性移植物
- 批准号:
9275408 - 财政年份:2014
- 资助金额:
$ 62.61万 - 项目类别:
Novel Vehicles for Targeted Cardiovascular Repair
用于靶向心血管修复的新型载体
- 批准号:
8579683 - 财政年份:2013
- 资助金额:
$ 62.61万 - 项目类别:
Novel Vehicles for Targeted Cardiovascular Repair
用于靶向心血管修复的新型载体
- 批准号:
8730215 - 财政年份:2013
- 资助金额:
$ 62.61万 - 项目类别:
相似海外基金
Enhancing gamete cryoprotective properties of graphene oxide by dual functionalization with antioxidants and non-penetrating cryoprotectant molecules
通过抗氧化剂和非渗透性冷冻保护剂分子的双重功能化增强氧化石墨烯的配子冷冻保护特性
- 批准号:
24K18002 - 财政年份:2024
- 资助金额:
$ 62.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
SBIR Phase I: Sustainable antioxidants for industrial process fluids
SBIR 第一阶段:工业过程流体的可持续抗氧化剂
- 批准号:
2222215 - 财政年份:2023
- 资助金额:
$ 62.61万 - 项目类别:
Standard Grant
Development of a new bone augmentation method that enables long-term survival and long-term functional expression of transplanted cells by antioxidants
开发一种新的骨增强方法,通过抗氧化剂使移植细胞能够长期存活和长期功能表达
- 批准号:
23K09272 - 财政年份:2023
- 资助金额:
$ 62.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-Invasive Probing Cellular Oxidative Stress and Antioxidants Therapeutic Effectiveness
非侵入性探测细胞氧化应激和抗氧化剂的治疗效果
- 批准号:
10652764 - 财政年份:2023
- 资助金额:
$ 62.61万 - 项目类别:
Mitochondria-targeting Novel Cationic Hydrazone Antioxidants for the Treatment of Preeclampsia
线粒体靶向新型阳离子腙抗氧化剂用于治疗先兆子痫
- 批准号:
10730652 - 财政年份:2023
- 资助金额:
$ 62.61万 - 项目类别:
Latent Antioxidants for Environmentally Responsible Polymer Formulations
用于环保聚合物配方的潜在抗氧化剂
- 批准号:
RGPIN-2018-04107 - 财政年份:2022
- 资助金额:
$ 62.61万 - 项目类别:
Discovery Grants Program - Individual
Contribution of antioxidants to regeneration of rotator cuff insertion
抗氧化剂对肩袖插入再生的贡献
- 批准号:
22K16720 - 财政年份:2022
- 资助金额:
$ 62.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of different doses of antioxidants(Vitamin E) intake on exercise induced oxidative stress, antioxidative capacity and chronic inflammation
不同剂量抗氧化剂(维生素E)摄入对运动引起的氧化应激、抗氧化能力和慢性炎症的影响
- 批准号:
22K11609 - 财政年份:2022
- 资助金额:
$ 62.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Polyunsaturated fatty acid (PUFA), inflammation and antioxidants
多不饱和脂肪酸 (PUFA)、炎症和抗氧化剂
- 批准号:
RGPIN-2019-05674 - 财政年份:2022
- 资助金额:
$ 62.61万 - 项目类别:
Discovery Grants Program - Individual
Suppressed methemoglobin formation of artificial red cell by liposomal antioxidants and its mechanism.
脂质体抗氧化剂抑制人工红细胞高铁血红蛋白形成及其机制
- 批准号:
22K12824 - 财政年份:2022
- 资助金额:
$ 62.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




