Evolution and optimization of synthetic <READ/WRITE> function from and into cells using genetic programming
使用遗传编程从细胞中进化和优化合成<READ/WRITE>功能
基本信息
- 批准号:10668511
- 负责人:
- 金额:$ 56.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:Algorithmic SoftwareAlgorithmsArtificial IntelligenceBackBacteriaBindingBinding ProteinsBiochemistryBiocompatible MaterialsBiologicalBiomedical EngineeringCellsChemicalsClinical TreatmentCollaborationsCommunicationComplexComputer ModelsDataData SetDiagnosisDiagnosticDirected Molecular EvolutionDisciplineDiseaseDrug Delivery SystemsEngineeringEvolutionFoundationsGadoliniumGene DeliveryGenesGeneticGenetic ProgrammingHumanKnowledgeLanthanoid Series ElementsMachine LearningMagnetic Resonance ImagingMammalian CellMeasurementMedicineMetalsMethodsModelingMolecular GeneticsNeckNeedlesOutputPatientsPeptidesPersonal SatisfactionPharmaceutical PreparationsPharmacologyPrecision therapeuticsProtein EngineeringProteinsProtonsPublic HealthReadingRelaxationReporterReporter GenesReportingSignal TransductionSpecificitySystemTechnologyTestingTherapeuticTherapeutic AgentsTimeTrainingTranslatingWhole OrganismWritingclinically relevantcomputer sciencecomputerized toolsdesignexperienceextracellular vesiclesfeedingfunctional improvementimaging agentimaging probeimprovedin vitro testingin vivoin vivo Modelinnovationmachine learning algorithmmetabolic engineeringnew technologynext generationnon-invasive imagingnovelnovel diagnosticsnovel therapeutic interventionpeptide drugprotein aminoacid sequenceprotein complexprotein functionsynthetic biologysynthetic peptidesynthetic proteintooltreatment strategytriple-negative invasive breast carcinoma
项目摘要
An immense advancement in machine learning and artificial intelligence has transformed many aspects
of our lives. The integration of artificial intelligence into the biomedical field allows us to solve complex biological
problems that are the bottle neck of developing progressive diagnostic and therapeutic tools. One example is
the need to manipulate the amino acid sequence of peptides to improve their function as bioactive molecules.
Embarking on these new technologies, we developed a new machine learning tool that is based on a discipline
known as “genetic programing” that can assist in designing new proteins and bioactive peptides. This new
technology, termed Protein Optimization Evolving Tool (POET), can generate a model that describes the
relationship between a peptide and its respective activity. Moreover, through cycles of protein evolution, we can
significantly improve the model and consequently generate peptides with substantially improved function.
A major challenge of translating synthetic biology approaches to clinical treatment is the need to improve
the communication with biological circuits in vivo. To that end, we will leverage the immense potential of the
POET to produce proteins and peptides that can read and write information from and into cells.
Here we seek to improve, test and implement this model into three related, yet, independent aims. In the
first aim, we will deploy the POET to develop an ultrasensitive peptide-based imaging agent for MRI based on
proton exchange. Our preliminary data shows that through only few cycles of peptide evolution we surpassed
the state-of-the-art similar peptides. In the second aim, we intend to use a similar approach to develop a novel
MRI imaging probe based on T1 relaxation. We will use a metabolic engineering approach to express and load
the peptide with Lanthanides, and the POET algorithm to improve the next generations. Lastly, in the third aim,
we will use the POET for discovering new peptides for drug and gene delivery. We will utilize a novel platform
for gene/drug delivery to test the efficiency of the peptides.
All three aims will start with computational design of peptides followed by an in vitro testing and several
cycles of peptide evolution until the ultimate peptides are identified. All three aims will be ended by demonstration
of the utility of those peptides in a clinically relevant question in an in vivo model followed by non-invasive
imaging.
We anticipate that this innovative approach will open up a new avenue for developing powerful bioactive
peptides and proteins to solve critical biological questions, and for developing new diagnostic and therapeutic
approaches that can vastly benefit the well-being of numerous patients.
机器学习和人工智能的巨大进步改变了许多方面
我们的生活。人工智能与生物医学领域的融合使我们能够解决复杂的生物学问题。
这些问题是发展进步的诊断和治疗工具的瓶颈。一个例子是
需要操纵肽的氨基酸序列以改善其作为生物活性分子的功能。
在这些新技术的基础上,我们开发了一种新的机器学习工具,
被称为“遗传编程”,可以帮助设计新的蛋白质和生物活性肽。这个新
技术,称为蛋白质优化进化工具(POET),可以生成一个模型,描述
肽与其各自活性之间的关系。此外,通过蛋白质进化的循环,我们可以
显著改善模型并因此产生具有显著改善的功能的肽。
将合成生物学方法转化为临床治疗的一个主要挑战是需要改进
与体内生物回路的通讯。为此,我们将利用
POET生产蛋白质和肽,可以从细胞读取信息和向细胞写入信息。
在这里,我们试图改进,测试和实施这一模式,成为三个相关的,但独立的目标。在
第一个目标,我们将部署POET开发一种超灵敏的基于肽的MRI成像剂,
质子交换我们的初步数据显示,通过短短几个周期的肽进化,
最先进的类似肽在第二个目标中,我们打算使用类似的方法来开发一种新的
基于T1弛豫的MRI成像探头。我们将使用代谢工程的方法来表达和加载
含镧系元素的多肽,以及POET算法来改进下一代。最后,第三个目标,
我们将使用POET来发现用于药物和基因递送的新肽。我们将利用一个新的平台
用于基因/药物递送以测试肽的效率。
所有这三个目标都将从肽的计算设计开始,然后进行体外测试,
肽进化的循环,直到最终的肽被识别。所有这三个目标都将通过演示来结束
这些肽在体内模型中的临床相关问题中的效用,
显像
我们预计,这种创新的方法将开辟一条新的途径,开发强大的生物活性
肽和蛋白质,以解决关键的生物学问题,并开发新的诊断和治疗
这些方法可以极大地造福于许多患者的健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wolfgang Banzhaf其他文献
Wolfgang Banzhaf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wolfgang Banzhaf', 18)}}的其他基金
Evolution and optimization of synthetic <READ/WRITE> function from and into cells using genetic programming
使用遗传编程从细胞中进化和优化合成<READ/WRITE>功能
- 批准号:
10488161 - 财政年份:2021
- 资助金额:
$ 56.3万 - 项目类别:
相似海外基金
CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
- 批准号:
2236926 - 财政年份:2023
- 资助金额:
$ 56.3万 - 项目类别:
Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
- 批准号:
LP210200798 - 财政年份:2023
- 资助金额:
$ 56.3万 - 项目类别:
Linkage Projects
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
- 批准号:
2765246 - 财政年份:2022
- 资助金额:
$ 56.3万 - 项目类别:
Studentship
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 56.3万 - 项目类别:
Standard Grant
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
- 批准号:
ES/R00983X/2 - 财政年份:2022
- 资助金额:
$ 56.3万 - 项目类别:
Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 56.3万 - 项目类别:
Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
- 批准号:
10683803 - 财政年份:2022
- 资助金额:
$ 56.3万 - 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
- 批准号:
460558 - 财政年份:2022
- 资助金额:
$ 56.3万 - 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
- 批准号:
RGPIN-2022-04417 - 财政年份:2022
- 资助金额:
$ 56.3万 - 项目类别:
Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
- 批准号:
10544772 - 财政年份:2022
- 资助金额:
$ 56.3万 - 项目类别: