Structure, function, and inhibition of the SARS-CoV-2 replication-transcription complex
SARS-CoV-2 复制转录复合物的结构、功能和抑制
基本信息
- 批准号:10669076
- 负责人:
- 金额:$ 62.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-06 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVActive SitesAntiviral AgentsArchitectureBindingBiochemicalBiological AssayCOVID-19COVID-19 pandemicCatalysisCellsCessation of lifeClassificationCollaborationsColorComplexCryoelectron MicroscopyDataData SetDevelopmentDiphosphatesDiseaseDrug DesignDrug TargetingEffectivenessElectrophoretic Mobility Shift AssayEnzymesExonucleaseFluorescenceFluorescence MicroscopyFoundationsGelGene ExpressionGenetic TranscriptionGenomeGoalsHandHigher Order Chromatin StructureHoloenzymesHuman MicrobiomeIn VitroInfectionInvestigationManuscriptsMapsMass Spectrum AnalysisMethyltransferaseModelingMolecularMolecular ConformationMolecular StructureN-terminalNucleic AcidsNucleotide MappingPolymeraseRNA Polymerase InhibitorRNA-Directed RNA PolymeraseReactionReplication-Associated ProcessReportingResolutionRiceRoleSARS-CoV-2 genomeSARS-CoV-2 inhibitorScientistSeveritiesSiteStructureTestingTimeTranscription ProcessViralViral GenomeViral PhysiologyVirusVirus InhibitorsVirus ReplicationWaterantimicrobialantiviral drug developmentcofactordrug discoveryendonucleaseexperimental studyhelicaseillness lengthimprovedin vivoinhibitorinsightlarge datasetsnew therapeutic targetnovelnovel therapeuticsnucleotide analogpathogenprotein protein interactionremdesivirsingle moleculesingle-molecule FRETstoichiometry
项目摘要
Project Summary
COVID-19, caused by the coronavirus SARS-CoV-2, continues to devastate the world. In less than a year,
there have been more than 20 million cases with over 700,000 deaths. The viral RNA-dependent RNA
polymerase (RdRp) is the central enzyme responsible for transcription and replication of the viral RNA
genome. This enzyme is also a target for the current antiviral, remdesivir, used to ameliorate the severity and
duration of this disease. The virus also encodes several nucleic acid processing enzymes, in addition to the
RdRp, including a helicase, an endonuclease, an exonuclease, and methyltransferases. However, it is
unknown how these enzymes coordinate to transcribe and replicate the viral genome. This proposal builds
upon preliminary data of the structure of the helicase, nsp13, in complex with the RdRp and a primed substrate
RNA (nsp13-replication/transcription complex or nsp13-RTC). The aims here include completing the structural
analysis of this complex by utilizing additional data collected. The result of this aim will provide higher
resolution (better than 2.7 Å in some parts the RdRp), providing a rich basis for the development of antiviral
inhibitors. Also, having this structure in hand allows for the collaboration with expert developers of
antimicrobials, also part of the aims, including the investigation of the structural details of the pre-incorporation
state of remdesivir and antivirals produced by human microbiome.
The models resulting from the structure of nsp13-RTC serve as foundations to test how the helicase and
exonuclease function together with the RdRp. Specifically, real-time fluorescence assays, single-molecule
fluorescence resonance energy transfer (FRET), and multi-color fluorescence microscopy will be used to probe
the role of the helicase and the exonuclease in unwinding substrate RNA, backtracking, and proofreading.
Another aim applies the pipeline used to characterize the nsp13-RTC assembly, which yielded a high-
resolution structure of the complex, to other RTC assemblies. Specifically, native electrophoretic mobility
assays will be used as a starting point to probe larger assemblies of the RTC. Native mass-spectrometry will
then be used to determine the composition and stoichiometry of the complexes. Finally, cryo-EM will be
applied to solve the structures of these macromolecular machines. The resulting structures will provide a
starting point to elucidate the coordinated functions of these enzymes, provide insight into their mechanisms,
and establish novel targets for therapeutics.
In summary, this proposal aims to understand at the molecular and structural level how the SARS-CoV-2
nucleic acid processing enzymes coordinate to replicate and transcribe the viral genome, and to provide
structure-guided targets for drug discovery, with the ultimate goal of providing relief for the COVID-19
pandemic.
项目概要
由冠状病毒 SARS-CoV-2 引起的 COVID-19 继续摧毁世界。在不到一年的时间里,
确诊病例已超过2000万例,死亡人数超过70万人。病毒RNA依赖性RNA
聚合酶 (RdRp) 是负责病毒 RNA 转录和复制的中心酶
基因组。这种酶也是当前抗病毒药物瑞德西韦(remdesivir)的靶标,用于缓解严重程度和
这种疾病的持续时间。除了编码酶外,该病毒还编码多种核酸加工酶。
RdRp,包括解旋酶、核酸内切酶、核酸外切酶和甲基转移酶。然而,它是
未知这些酶如何协调转录和复制病毒基因组。该提案构建
根据解旋酶 nsp13 与 RdRp 和底物的复合物结构的初步数据
RNA(nsp13-复制/转录复合物或 nsp13-RTC)。这里的目标包括完成结构
利用收集到的额外数据对该复合物进行分析。这一目标的结果将提供更高
分辨率(RdRp的某些部分优于2.7 Å),为抗病毒药物的开发提供了丰富的基础
抑制剂。此外,掌握此结构还可以与以下领域的专家开发人员进行协作:
抗菌药物,也是目标的一部分,包括研究预掺入的结构细节
瑞德西韦和人类微生物组产生的抗病毒药物的状态。
由 nsp13-RTC 结构产生的模型可作为测试解旋酶和
核酸外切酶与 RdRp 一起发挥作用。具体来说,实时荧光测定、单分子
荧光共振能量转移(FRET)和多色荧光显微镜将用于探测
解旋酶和核酸外切酶在解旋底物 RNA、回溯和校对中的作用。
另一个目标是应用用于表征 nsp13-RTC 组件的管道,该组件产生了高
复杂的分辨率结构,以供其他 RTC 组件使用。具体来说,本机电泳迁移率
检测将用作探测 RTC 更大组件的起点。天然质谱将
然后用于确定复合物的组成和化学计量。最后,冷冻电镜将
应用于解决这些高分子机器的结构。由此产生的结构将提供
阐明这些酶的协调功能的起点,深入了解它们的机制,
并建立新的治疗靶点。
总之,该提案旨在从分子和结构层面了解 SARS-CoV-2 如何
核酸加工酶协调复制和转录病毒基因组,并提供
以结构为导向的药物发现目标,最终目标是缓解 COVID-19
大流行。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ELIZABETH A CAMPBELL其他文献
ELIZABETH A CAMPBELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ELIZABETH A CAMPBELL', 18)}}的其他基金
Structure, function, and inhibition of the SARS-CoV-2 replication-transcription complex
SARS-CoV-2 复制转录复合物的结构、功能和抑制
- 批准号:
10238209 - 财政年份:2021
- 资助金额:
$ 62.05万 - 项目类别:
Structure, function, and inhibition of the SARS-CoV-2 replication-transcription complex
SARS-CoV-2 复制转录复合物的结构、功能和抑制
- 批准号:
10463632 - 财政年份:2021
- 资助金额:
$ 62.05万 - 项目类别:
Structural and Functional Characterization of RNA polymerase and its Regulators from Mycobacterium tuberculosis and Clostridioides difficile
结核分枝杆菌和艰难梭菌 RNA 聚合酶及其调节剂的结构和功能表征
- 批准号:
10581925 - 财政年份:2015
- 资助金额:
$ 62.05万 - 项目类别:
Structural and Functional Characterization of RNA polymerase and its Regulators from Mycobacterium tuberculosis and Clostridioides difficile
结核分枝杆菌和艰难梭菌 RNA 聚合酶及其调节剂的结构和功能表征
- 批准号:
10370352 - 财政年份:2015
- 资助金额:
$ 62.05万 - 项目类别:
Structural and Functional Characterization of RNA polymerase and its Regulators from Mycobacterium tuberculosis and Clostridioides difficile
结核分枝杆菌和艰难梭菌 RNA 聚合酶及其调节剂的结构和功能表征
- 批准号:
10388936 - 财政年份:2015
- 资助金额:
$ 62.05万 - 项目类别:
Structure/function analyses of essential mycobacterial transcription regulators
分枝杆菌必需转录调节因子的结构/功能分析
- 批准号:
9041636 - 财政年份:2015
- 资助金额:
$ 62.05万 - 项目类别:
Structure/function analyses of essential mycobacterial transcription regulators
分枝杆菌必需转录调节因子的结构/功能分析
- 批准号:
8861934 - 财政年份:2015
- 资助金额:
$ 62.05万 - 项目类别:
Structural and Functional Characterization of RNA polymerase and its Regulators from Mycobacterium tuberculosis and Clostridioides difficile
结核分枝杆菌和艰难梭菌 RNA 聚合酶及其调节剂的结构和功能表征
- 批准号:
10586042 - 财政年份:2015
- 资助金额:
$ 62.05万 - 项目类别:
STRUCTURE OF THE BACTERIAL RNA POLYMERASE PROMOTER
细菌RNA聚合酶启动子的结构
- 批准号:
6975789 - 财政年份:2004
- 资助金额:
$ 62.05万 - 项目类别:
STRUCTURAL STUDIES OF RNA POLYMERASE COMPLEXES
RNA聚合酶复合物的结构研究
- 批准号:
6135045 - 财政年份:2000
- 资助金额:
$ 62.05万 - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 62.05万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 62.05万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 62.05万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 62.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 62.05万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 62.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 62.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 62.05万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 62.05万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 62.05万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




