Neural Conversational Agent for Automated Weight Loss Counseling
用于自动减肥咨询的神经对话代理
基本信息
- 批准号:10668094
- 负责人:
- 金额:$ 22.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-08 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultArchitectureAreaArtificial IntelligenceAssessment toolAttentionBehaviorBehavior TherapyBehavioralBody Weight decreasedCellular PhoneClientCodeCollectionCommunications MediaComplementCounselingData AnalysesDevelopmentFamily PracticeFeedbackFoundationsFrightFutureGeographic LocationsGesturesHealthHealth PersonnelHealth SciencesHealth educationHealthcareHumanImageInterventionInterviewJudgmentLanguageLearningLifeLiteratureMedicalMedicineMethodsModernizationMusicObesityParticipantPatient ParticipationPatientsPoliciesPostureProceduresProfessional counselorProvincePublic HealthPublishingQuantitative EvaluationsResearch Project GrantsService delivery modelServicesSpeechStandardizationStructureTabletsTechniquesTechnologyTextTimeTrainingTranscriptUnited StatesUniversitiesValidationVisualWait TimeWeightWorkadult obesityanimationartificial intelligence methodautoencoderbarrier to carebehavior changebehavioral healthclinical diagnosisclinical diagnosticscommunication behaviorcomputer sciencecomputerizedcostdeep learningfeasibility testinggazehandheld mobile deviceimprovedinnovationintelligent agentlearning networkmotivational enhancement therapyneuralneural networkneurodevelopmentnovelobese patientspatient engagementpractice-based research networkprimary care practiceprovider adoptionrecruitresponseskillstheoriestherapeutically effectiveusabilityvirtual coachweight loss intervention
项目摘要
Obesity is one of the most important medical and public health problems in the United States. According to
recent nationally representative studies, every third adult in the U.S. is obese. Motivational Interviewing (MI),
a client-centered and directive approach to behavior change counseling, has been widely adapted for treating
obesity. Despite the evidence presented in published meta-reviews that suggests that MI is effective at
activating behavioral changes, anthropometric changes are less significant. At the same time, there are several
access barriers to this type of behavioral health care, such as shortage of human counselors in certain
geographical areas, long wait times, cost, and fear of judgment. Recent advances in deep learning have allowed
artificial intelligence (AI) methods to expand into the areas of health care that were previously thought to be
the exclusive province of human experts, such as clinical diagnostics. Behavioral health and MI, however, are
the areas of medicine that have not yet substantially benefitted from modern AI technologies, such as neural
conversational agents. To address this limitation, the proposed project aims to test the feasibility and usability
of using neural conversational agents for automated behavioral counseling with a focus on weight loss.
Specifically, we build on recent advances in deep learning, such as conversational agents, neural attention,
transformers, supervised policy learning, variational autoencoders and adversarial training, and aim to develop
and validate Neural Agent for Obesity Motivational Interviewing (NAOMI), a mobile device (smartphone or
tablet) application to conduct automated MI counseling focused on weight loss. NAOMI is based on a novel
neural architecture, which consists of neural networks that can be independently and collectively trained using
the proposed multi-stage procedure to learn communication behaviors, which should be strategically utilized
during different stages of an MI counseling session depending on the observed interactions and generate
responses that are grounded in session context and reflect patient’s language. We will recruit 40 obese adults,
who will interact with NAOMI and provide their feedback through semi-structured qualitative interviews. We
plan on conducting at most 4 iterative development cycles of NAOMI with 10 patients participating in each
cycle. We will conduct a mixed-methods sub-study after each development cycle. Quantitative evaluation of
NAOMI’s MI counseling skills will be conducted based on the transcripts of participants’ interactions by a
coder trained in using the MI Treatment Integrity (MITI) coding system, a standard instrument for assessing
MI fidelity. Qualitative interviews with the participants will be analyzed using Framework Matrix Analysis. The
methods and techniques proposed in this project can be adapted to other types of psychotherapeutic
interventions besides MI and to other conditions besides obesity.
肥胖是美国最重要的医学和公共卫生问题之一。根据
最近的全国代表性研究表明,美国三分之一的成年人肥胖。动机面试(MI),
一个以客户为中心和指导性的行为改变咨询方法,已被广泛适用于治疗
肥胖尽管发表的荟萃综述中提出的证据表明,MI在以下方面是有效的:
激活行为变化,人体测量变化不太显著。与此同时,
获得这种类型的行为卫生保健的障碍,例如某些地区缺乏人类咨询师,
地理区域、漫长的等待时间、成本和对判断的恐惧。深度学习的最新进展使得
人工智能(AI)方法扩展到以前被认为是
人类专家的专属领域,如临床诊断。然而,行为健康和MI是
尚未从现代人工智能技术中获益的医学领域,如神经
会话代理。为了解决这一限制,拟议的项目旨在测试可行性和可用性
使用神经对话代理进行自动行为咨询,重点是减肥。
具体来说,我们建立在深度学习的最新进展,如会话代理,神经注意力,
transformers,监督策略学习,变分自编码器和对抗训练,旨在开发
并验证神经代理肥胖动机面试(NAOMI),一个移动终端(智能手机或
平板电脑)应用程序进行自动化MI咨询,重点是减肥。NAOMI是根据小说改编的
神经架构,由神经网络组成,可以使用
建议的多阶段程序,以学习沟通行为,这应该是战略性的利用
在MI咨询会话的不同阶段,根据观察到的相互作用,
基于会话上下文并反映患者语言的响应。我们将招募40名肥胖的成年人,
他们将与NAOMI互动,并通过半结构化定性访谈提供反馈。我们
计划进行最多4个NAOMI迭代开发周期,每个周期有10名患者参与
周期我们将在每个开发周期后进行混合方法子研究。定量评价
NAOMI的MI咨询技能将根据参与者的互动记录进行,
编码员接受过使用MI治疗完整性(MITI)编码系统的培训,MITI编码系统是一种用于评估
我的忠诚。与参与者的定性访谈将使用框架矩阵分析进行分析。的
本项目提出的方法和技术可以适用于其他类型的心理治疗。
除了MI和肥胖症以外的其他疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Kotov其他文献
Alexander Kotov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 22.12万 - 项目类别:
Research Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 22.12万 - 项目类别:
Standard Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 22.12万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 22.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 22.12万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 22.12万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 22.12万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 22.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 22.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 22.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)