Three-Dimensional (3D) Acoustofluidic Scanning Nanoscope with Super Resolution and Large Field of View

具有超分辨率和大视场的三维 (3D) 声流控扫描纳米镜

基本信息

  • 批准号:
    10670925
  • 负责人:
  • 金额:
    $ 36.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Over the past two decades, a number of “super-resolution” 3D imaging technologies have been developed, enabling researchers to observe nanoscale biological structures that were previously invisible to traditional, diffraction-limited imaging techniques. The ability to visualize cellular and subcellular structures at the nanoscale has revealed key insights into a variety of biological processes. Although impressive progress has been made in the development of 3D super-resolution imaging techniques, researchers are often forced to accept a tradeoff in terms of the resolution, field-of-view, speed, and ease of use of their 3D imaging technique. Recently, we have developed an acoustofluidic scanning nanoscope that can simultaneously achieve both super-resolution and large field-of-view imaging in 2D. In this R01 project, we will develop and validate a 3D acoustofluidic scanning nanoscope with the following features: (1) Super-resolution imaging with lateral and axial resolutions of ~50 nm and ~120 nm, respectively: The proposed 3D imaging method will achieve a resolution that is four times better than that from a confocal microscope, which makes the optical imaging of more detailed inner architecture of many subcellular structures possible; (2) Large field-of-view (~1,100×1,100 µm2): Conventional optical imaging methods achieve high-throughput imaging at the cost of reduced resolution and vice versa. By utilizing acoustics to simultaneously manipulate multiple microsphere lenses, the proposed imaging method will solve this long-standing technical barrier for large field-of-view imaging while maintaining superior lateral and axial resolution; (3) Imaging speed 10 times faster than that from a confocal microscope: Rapid z-stacking at a speed 10 times faster than that of a confocal microscope can be achieved by using surface acoustic waves to scan an array of microspheres across the sample volume in a precise, controllable manner; (4) Seamless connection to a conventional optical microscope for ease of use: Our device can be seamlessly connected to a conventional optical microscope without modification of the optical setup, which can significantly reduce the cost and the complexity of operation. With the aforementioned advantages, the proposed 3D acoustofluidic scanning nanoscope technology has the potential to significantly exceed current standards in the field and address many unmet needs. We will validate its performance by imaging 3D nanorod samples and the organelles of live HeLa cells. In this regard, we aim to demonstrate the far-reaching potential of our 3D acoustofluidic scanning nanoscope technology to enable improved research in areas ranging from subcellular imaging to the visualization of 3D neural activity.
项目概要 过去二十年,涌现出多项“超分辨率”3D成像技术, 使研究人员能够观察以前传统方法看不见的纳米级生物结构, 衍射极限成像技术。能够在纳米尺度上可视化细胞和亚细胞结构 揭示了对各种生物过程的重要见解。尽管已经取得了令人瞩目的进展 在 3D 超分辨率成像技术的开发过程中,研究人员常常被迫接受一种权衡 在 3D 成像技术的分辨率、视场、速度和易用性方面。最近,我们有 开发了一种声流控扫描纳米显微镜,可以同时实现超分辨率和 大视场二维成像。在这个 R01 项目中,我们将开发并验证 3D 声流扫描 纳米显微镜具有以下特点:(1)超分辨率成像,横向和轴向分辨率~50 nm 和 ~120 nm:所提出的 3D 成像方法将实现四倍的分辨率 优于共焦显微镜,使得内部结构的光学成像更加细致 许多可能的亚细胞结构; (2) 大视场角(~1,100×1,100 µm2):传统光学 成像方法以降低分辨率为代价实现高通量成像,反之亦然。通过利用 声学同时操纵多个微球透镜,所提出的成像方法将解决 这一长期存在的技术障碍是大视场成像同时保持卓越的横向和轴向 解决; (3) 成像速度比共焦显微镜快 10 倍:快速 z 堆叠 通过使用表面声波,可以实现比共焦显微镜快 10 倍的速度 以精确、可控的方式扫描整个样品体积中的微球阵列; (4) 无缝 连接到传统光学显微镜以方便使用:我们的设备可以无缝连接 与传统光学显微镜相比,无需修改光学设置,可以显着降低 成本和操作的复杂性。凭借上述优点,所提出的 3D 声流控 扫描纳米镜技术有可能显着超过该领域的当前标准, 解决许多未满足的需求。我们将通过 3D 纳米棒样品和细胞器成像来验证其性能 活的 HeLa 细胞。在这方面,我们的目标是展示我们的 3D 声流控技术的深远潜力 扫描纳米镜技术能够改进从亚细胞成像到 3D 神经活动的可视化。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Determining the laser-induced release probability of a nanoparticle from a soft substrate.
  • DOI:
    10.1364/ol.475174
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Imad Agha其他文献

Imad Agha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
  • 批准号:
    10078324
  • 财政年份:
    2023
  • 资助金额:
    $ 36.99万
  • 项目类别:
    BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
  • 批准号:
    2308300
  • 财政年份:
    2023
  • 资助金额:
    $ 36.99万
  • 项目类别:
    Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
  • 批准号:
    10033989
  • 财政年份:
    2023
  • 资助金额:
    $ 36.99万
  • 项目类别:
    Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
  • 批准号:
    23K16913
  • 财政年份:
    2023
  • 资助金额:
    $ 36.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
  • 批准号:
    10582051
  • 财政年份:
    2023
  • 资助金额:
    $ 36.99万
  • 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
  • 批准号:
    10602958
  • 财政年份:
    2023
  • 资助金额:
    $ 36.99万
  • 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
  • 批准号:
    2889921
  • 财政年份:
    2023
  • 资助金额:
    $ 36.99万
  • 项目类别:
    Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2343847
  • 财政年份:
    2023
  • 资助金额:
    $ 36.99万
  • 项目类别:
    Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
  • 批准号:
    DGECR-2022-00019
  • 财政年份:
    2022
  • 资助金额:
    $ 36.99万
  • 项目类别:
    Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2141275
  • 财政年份:
    2022
  • 资助金额:
    $ 36.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了