Decoding the Multifactorial Etiology of Neural Network Dysfunction in Alzheimer's Disease

解读阿尔茨海默病神经网络功能障碍的多因素病因

基本信息

  • 批准号:
    10670331
  • 负责人:
  • 金额:
    $ 465.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-15 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

OVERALL – SUMMARY Alzheimer’s disease (AD) is a major unresolved public health problem. Efforts to prevent or stall this disease have failed, in good part because of inadequate understanding of its complex pathogenesis. Mounting evidence suggest that neural network dysfunction may underlie or promote AD-related cognitive deficits and contribute to disease progression. Yet, the causes and consequences of this dysfunction and the therapeutic potential of counteracting it remain sorely understudied. Therefore, the overarching goal of this program project is to decode the multifactorial etiology of AD-related neural network dysfunction and to leverage the novel mechanistic insights we will gain toward the development of better therapeutic strategies. Through collaborative interactions among four projects and two cores, our program will use systems neuroscience (neurophysiology and behavior) in combination with systems biology (single-cell transcriptomics and epigenomics), as well as neuropathology and improved mouse models, to determine how copathogenic interactions among apolipoprotein (apo) E4, amyloid-b (Ab), and tau cause neural network dysfunctions and cognitive decline in AD. An Administrative Core will coordinate all activities. Projects 1–3 will use novel mouse models of sporadic and familial AD to study interactions of different apoE isoforms with wildtype (WT) human tau (Project 1) or APP/Ab (Project 2), or among apoE4, Ab, and tau that is WT or bears disease-associated amino acid substitutions (Project 3). Project 4 will carry out single-nucleus transcriptomic and epigenomic analyses on postmortem brain tissues from deeply phenotyped human AD cases to gain novel insights into the multifactorial etiology of the human condition, validate leads from mouse studies, and encourage backtranslation into the models. An Integrative Data-Science Core will help us integrate results from all projects through innovative statistical modeling. This approach will reveal which aspects of human AD are most faithfully reproduced in the mouse models and help establish the causal drivers of cell-specific alterations in the human tissues, increasing the mechanistic resolving power of the latter studies. Therapeutic interventions in mouse models will determine whether reducing apoE4 expression in specific cell types can block copathogenic effects of apoE4 and tau on brain functions (Project 1), modulating the activity of specific interneurons can counteract copathogenic effects of apoE4 and APP/Ab (Projects 2 and 4), and knocking down tau can prevent and reverse brain dysfunction in models expressing all three pathogenic factors (Project 3). Through these highly cohesive efforts, our program will dissect the multifactorial interactions among AD-related pathogenic factors, define their relative contributions to the complex pathogenesis of brain dysfunctions, and help distinguish among neuropathological alterations that cause, result from, or are coincidental to neural network dysfunctions and cognitive decline. Sharing the diverse data sets we will generate and disseminating the novel integrative approaches we plan to develop for their analysis could enhance the progress of many other groups working in AD research and drug development or biomedicine in general.
总体-摘要 阿尔茨海默病(AD)是一个尚未解决的重大公共卫生问题。预防或阻止这种疾病的努力 失败了,很大程度上是因为对其复杂的发病机制缺乏了解。越来越多的证据 提示神经网络功能障碍可能是AD相关认知缺陷的基础或促进, 疾病进展。然而,这种功能障碍的原因和后果以及 对抗它的方法还没有被充分研究。因此,本项目的首要目标是解码 AD相关神经网络功能障碍的多因素病因学,并利用新的机制 我们将获得更好的治疗策略的发展。通过协作互动 在四个项目和两个核心中,我们的项目将使用系统神经科学(神经生理学和行为学) 结合系统生物学(单细胞转录组学和表观基因组学)以及神经病理学 和改进的小鼠模型,以确定载脂蛋白(apo)E4, 淀粉样蛋白-b(Ab)和tau引起AD中的神经网络功能障碍和认知下降。行政核心 协调所有活动。项目1-3将使用散发性和家族性AD的新型小鼠模型进行研究 不同apoE亚型与野生型(WT)人tau(项目1)或APP/Ab(项目2)的相互作用,或 apoE 4、Ab和tau,其为WT或具有疾病相关的氨基酸取代(项目3)。项目4将 对死后脑组织进行单核转录组和表观基因组分析, 人类AD病例的表型以获得对人类病症的多因素病因学的新见解, 验证来自小鼠研究的线索,并鼓励反向翻译到模型中。综合数据科学 Core将通过创新的统计建模帮助我们整合所有项目的结果。这种方法将 揭示人类AD的哪些方面在小鼠模型中最忠实地再现,并帮助建立 人体组织中细胞特异性改变的因果驱动因素,提高了组织的机械分辨能力 后来的研究。在小鼠模型中的治疗干预将决定是否降低apoE 4表达, 特定的细胞类型可以阻断apoE 4和tau对脑功能的共同致病作用(项目1), 特异性中间神经元的活性可以抵消apoE 4和APP/Ab的共致病作用(项目2和 4),敲低tau蛋白可以预防和逆转表达所有三种致病性 项目(3)。通过这些高度凝聚力的努力,我们的计划将剖析多因素的相互作用, 在AD相关的致病因素中,确定它们在脑的复杂发病机制中的相对贡献, 功能障碍,并帮助区分神经病理学改变的原因,结果,或 与神经网络功能障碍和认知能力下降相吻合分享我们将生成的各种数据集 传播我们计划为他们的分析开发的新的综合方法可以提高 在AD研究和药物开发或一般生物医学方面工作的许多其他小组的进展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YADONG HUANG其他文献

YADONG HUANG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YADONG HUANG', 18)}}的其他基金

Develop AD Connectivity Maps with Human iPSC-Derived Brain Cells and their Use
使用人类 iPSC 衍生脑细胞开发 AD 连接图及其用途
  • 批准号:
    10504728
  • 财政年份:
    2022
  • 资助金额:
    $ 465.72万
  • 项目类别:
Develop AD Connectivity Maps with Human iPSC-Derived Brain Cells and their Use
使用人类 iPSC 衍生脑细胞开发 AD 连接图及其用途
  • 批准号:
    10686182
  • 财政年份:
    2022
  • 资助金额:
    $ 465.72万
  • 项目类别:
Study Susceptibility and Resistance to ApoE4 in Alzheimer's Disease
研究阿尔茨海默病中 ApoE4 的易感性和耐药性
  • 批准号:
    10418144
  • 财政年份:
    2022
  • 资助金额:
    $ 465.72万
  • 项目类别:
Decoding the Multifactorial Etiology of Neural Network Dysfunction in Alzheimer's Disease
解读阿尔茨海默病神经网络功能障碍的多因素病因
  • 批准号:
    10525204
  • 财政年份:
    2021
  • 资助金额:
    $ 465.72万
  • 项目类别:
Decoding the Multifactorial Etiology of Neural Network Dysfunction in Alzheimer's Disease
解读阿尔茨海默病神经网络功能障碍的多因素病因
  • 批准号:
    10691620
  • 财政年份:
    2021
  • 资助金额:
    $ 465.72万
  • 项目类别:
Project 1: Differential Roles of ApoE Isoforms in Neural Network Dysfunction of Alzheimer's Disease
项目 1:ApoE 同工型在阿尔茨海默病神经网络功能障碍中的不同作用
  • 批准号:
    10461842
  • 财政年份:
    2021
  • 资助金额:
    $ 465.72万
  • 项目类别:
Neuronal ApoE Drives Selective Neurodegeneration in Alzheimer's Disease
神经元 ApoE 驱动阿尔茨海默病的选择性神经变性
  • 批准号:
    10640879
  • 财政年份:
    2021
  • 资助金额:
    $ 465.72万
  • 项目类别:
Neuronal ApoE Drives Selective Neurodegeneration in Alzheimer's Disease
神经元 ApoE 驱动阿尔茨海默病的选择性神经变性
  • 批准号:
    10458692
  • 财政年份:
    2021
  • 资助金额:
    $ 465.72万
  • 项目类别:
Decoding the Multifactorial Etiology of Neural Network Dysfunction in Alzheimer's Disease
解读阿尔茨海默病神经网络功能障碍的多因素病因
  • 批准号:
    10461839
  • 财政年份:
    2021
  • 资助金额:
    $ 465.72万
  • 项目类别:
Project 1: Differential Roles of ApoE Isoforms in Neural Network Dysfunction of Alzheimer's Disease
项目 1:ApoE 同工型在阿尔茨海默病神经网络功能障碍中的不同作用
  • 批准号:
    10670337
  • 财政年份:
    2021
  • 资助金额:
    $ 465.72万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 465.72万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 465.72万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 465.72万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 465.72万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 465.72万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 465.72万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 465.72万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 465.72万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 465.72万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 465.72万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了