Building protein structure models for intermediate resolution cryo-electron microscopy maps

建立中等分辨率冷冻电子显微镜图的蛋白质结构模型

基本信息

  • 批准号:
    10670831
  • 负责人:
  • 金额:
    $ 30.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-20 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary Cryo-electron microscopy (cryo-EM) is an emerging technique in structural biology, which is capable of determining three-dimensional (3D) structures of biological macromolecules. Compared to conventional structural biology techniques, such as X-ray crystallography and NMR, a major advantage of cryo-EM is its ability to solve large macromolecular assemblies. Moreover, recent technical breakthroughs in cryo-EM have enabled determination of 3D structures at nearly atomic-level resolutions. Cryo-EM will undoubtedly become a method of central importance in structural biology in the next decade. With the rapid accumulation of cryo-EM structure data, it has become crucial to develop computational methods that can effectively build and extract 3D structures of biological macromolecules from EM maps. The goal of this project is to develop computational methods for modeling both global and local structures and for interpreting 3D structures embedded in EM maps of around 4 Å to medium-resolution. Recently, we have developed a new de novo protein structure modeling method, MAINMAST, which can model protein structures from an EM density map without using existing template or fragment structures on the map. Based on the successful development of MAINMAST, we further extend the capability of MAINMAST toward more accurate modeling and for multiple-chain modeling. In addition, we will also develop novel modeling methods for medium-resolution EM maps, which combine a coarse-grained protein structure modeling technique, methods in protein structure prediction, and a low- resolution image processing approach with deep learning, a state-of-the-art powerful machine learning method. The proposed project capitalizes on the tremendous efforts and progress made in structural determination with cryo-EM by developing computational tools that allow researchers to perform efficient and reliable structure analyses for 3D EM density maps. The project will greatly facilitate investigation into the molecular mechanisms of macromolecule function by providing an efficient means of 3D structure modeling.
项目摘要 冷冻电子显微镜(cryo-EM)是结构生物学中的新兴技术,其能够 确定生物大分子的三维(3D)结构。相比于常规 结构生物学技术,如X射线晶体学和NMR,冷冻EM的主要优点是其 解决大分子组装的能力。此外,最近在冷冻EM方面的技术突破 能够以接近原子级的分辨率确定3D结构。Cryo-EM无疑将成为 在未来十年中,结构生物学的核心重要性。随着冷冻EM的迅速积累 结构化数据,开发能够有效地构建和提取 来自EM图的生物大分子的3D结构。该项目的目标是开发计算 用于建模全局和局部结构以及用于解释嵌入EM中的3D结构的方法 大约4厘米到中等分辨率的地图。最近,我们开发了一种新的从头蛋白质结构, 建模方法MAINMAST,它可以从EM密度图建模蛋白质结构,而无需使用 地图上现有的模板或片段结构。在成功开发MAINMAST的基础上, 进一步扩展MAINMAST的能力,使其更精确地建模和多链建模。在 此外,我们还将开发新的建模方法,为中等分辨率的电磁地图,其中联合收割机, 粗粒度蛋白质结构建模技术,蛋白质结构预测方法,以及低- 分辨率图像处理方法与深度学习,一个国家的最先进的强大的机器学习方法。 拟议项目利用了在结构确定方面所做的巨大努力和取得的进展, 通过开发计算工具,使研究人员能够执行有效和可靠的结构, 分析3D EM密度图。该项目将极大地促进对分子的研究 通过提供3D结构建模的有效手段来研究大分子功能机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daisuke Kihara其他文献

Daisuke Kihara的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daisuke Kihara', 18)}}的其他基金

Building protein structure models for intermediate resolution cryo-electron microscopy maps
建立中等分辨率冷冻电子显微镜图的蛋白质结构模型
  • 批准号:
    10405197
  • 财政年份:
    2020
  • 资助金额:
    $ 30.54万
  • 项目类别:
Building protein structure models for intermediate resolution cryo-electron microscopy maps
建立中等分辨率冷冻电子显微镜图的蛋白质结构模型
  • 批准号:
    10794660
  • 财政年份:
    2020
  • 资助金额:
    $ 30.54万
  • 项目类别:
Building protein structure models for intermediate resolution cryo-electron microscopy maps
建立中等分辨率冷冻电子显微镜图的蛋白质结构模型
  • 批准号:
    10266083
  • 财政年份:
    2020
  • 资助金额:
    $ 30.54万
  • 项目类别:
Building protein structure models for intermediate resolution cryo-electron microscopy maps
建立中等分辨率冷冻电子显微镜图的蛋白质结构模型
  • 批准号:
    10462711
  • 财政年份:
    2020
  • 资助金额:
    $ 30.54万
  • 项目类别:
Identification of protein-metabolite interactome.
蛋白质-代谢物相互作用组的鉴定。
  • 批准号:
    8477213
  • 财政年份:
    2011
  • 资助金额:
    $ 30.54万
  • 项目类别:
Identification of protein-metabolite interactome.
蛋白质-代谢物相互作用组的鉴定。
  • 批准号:
    8665991
  • 财政年份:
    2011
  • 资助金额:
    $ 30.54万
  • 项目类别:
Identification of protein-metabolite interactome.
蛋白质-代谢物相互作用组的鉴定。
  • 批准号:
    8324598
  • 财政年份:
    2011
  • 资助金额:
    $ 30.54万
  • 项目类别:
Identification of protein-metabolite interactome.
蛋白质-代谢物相互作用组的鉴定。
  • 批准号:
    8086786
  • 财政年份:
    2011
  • 资助金额:
    $ 30.54万
  • 项目类别:
PROTEIN-PROTEIN DOCKING USING LOCAL SHAPE INVARIANTS
使用局部形状不变量进行蛋白质-蛋白质对接
  • 批准号:
    8171888
  • 财政年份:
    2010
  • 资助金额:
    $ 30.54万
  • 项目类别:
PROTEIN-PROTEIN DOCKING USING LOCAL SHAPE INVARIANTS
使用局部形状不变量进行蛋白质-蛋白质对接
  • 批准号:
    7956349
  • 财政年份:
    2009
  • 资助金额:
    $ 30.54万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.54万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 30.54万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 30.54万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 30.54万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 30.54万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 30.54万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 30.54万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 30.54万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 30.54万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 30.54万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了