Hats & Ladders for Health: Data-driven Decision-Making for Future Health Citizens and Professionals
帽子
基本信息
- 批准号:10696572
- 负责人:
- 金额:$ 29.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdolescentAlgorithmsAwarenessBenchmarkingBlack raceBlack, Indigenous, People of ColorCareer ChoiceClientCommunitiesCommunity DevelopmentsCuriositiesDataDatabasesDecision MakingDevelopmentEcologyEducational CurriculumEducational process of instructingEducational workshopEffectivenessEffectiveness of InterventionsEquityEvaluationFaceFeedbackFutureGoalsHealthHealth EducatorsHealth OccupationsHealth PersonnelHealth ProfessionalHealth educationHealthcareHumanInstructionInterventionInterviewJointsKnowledgeLatinoLearningMeasuresMedicineMentorsMetadataMethodsOutcomeOutcome MeasureParticipantPersonal SatisfactionPersonsPhaseProblem SolvingProgress ReportsPublic HealthRaceRandomized, Controlled TrialsRecommendationReportingResearchRespondentSamplingSchoolsSelf AssessmentSelf EfficacySmall Business Innovation Research GrantStudentsSurveysTestingTexasTrainingUniversitiesVocational GuidanceWorkYouthadolescent healthaspirateaustincareercognitive interviewcommunity organizationsdashboarddesigndigitaldigital interventionefficacy testingexperiencehealth literacyhigh schoolimprovedinnovationinquiry-based learninginteroperabilityliteracyninth gradenoveloperationpeer coachingpilot testprogramsprototyperecruitresearch and developmentrole modelskillstenth gradeusabilityvolunteer
项目摘要
PROJECT SUMMARY
Despite a growing demand for health care workers and evidence that a diverse health workforce is vital for
public wellbeing, most young people lack awareness of health career options and how to pursue them. Narrow
career exposure, insufficient advising, lack of encouragement to pursue STEM subjects, and lack of concordant
mentors are significant barriers for Black and Latino/x youth—two groups consistently under-represented
across health professions. This project will help these adolescents to overcome barriers and develop positive
health identities so they are more confident in their ability to undertake challenging health career pathways and
to make informed health decisions. To do so, a joint team from Hats & Ladders, Inc., Mentoring in Medicine,
the University of Texas at Austin School of Human Ecology, CareerVillage and Applied Curiosity Research will
design, develop, and test Hats & Ladders for Health: Data-driven Decision-Making for Future Health Citizens
and Professionals (HLH). This blended digital experience targets 9th- and 10th-grade students and educators in
general career and health education programs, and will consist of a digital gamified app, project-based
activities, live health career panels, near-peer mentoring sessions, and a robust instructional toolkit with training
videos, progress reports, lessons and other educator supports for providing accurate, actionable student
feedback. The overall outcomes of HLH’s data-driven, inquiry-based, and inclusive intervention could have
broad reaching public health impact, and are to (1) increase students’ confidence in their ability to pursue
challenging health career pathways and solve problems along the way; (2) increase their ability to find,
understand, and use information to make health-related decisions; and, (3) develop educators’ capacity to
provide quality health career guidance and health literacy instruction. Designed to strengthen our organization’s
impact on high school youth, our intervention will bring a novel set of interactions––as requested by our
existing users––and use them to deepen inquiry-based learning related to health careers and literacy during the
critical stage of early high school.
In Phase I, the H&L R&D team will collect, analyze and input data from concordant healthcare professionals
into a new health career database that we will integrate into the HLH app. To gather the data, we will develop,
and test for relevance, an online survey targeting 500 racially and professionally diverse respondents through
CareerVillage’s community of 3,000 health professionals (52% BIPOC) and 1,500+ Mentoring in Medicine
volunteers. A subset of 25-30 survey respondents will participate in video interviews. Survey data and video
snippets will be tagged with metadata and inputted into the database enabling us to recommend authentic and
relevant health content to students with shared demographic and career attributes. We will test usability and
feasibility of app designs and prototypes with students in small groups or dyads, and both app and dashboard
components with educators using in-depth interviews. We will also adapt two student outcome measures, the
Assessment of Adolescent Health Literacy and the Career Decision-Making Self Efficacy Scale, using expert
reviews and cognitive interviews with students, and then test the measures with a sample of 400 students. All
participants will be recruited from NYC Department of Youth and Community Development’s network of 180+
community-based organizations that work with NYC high schools. In Phase II, we will iterate and develop a
near final product to pilot test in five NYC classrooms to further explore the usability, feasibility, and support
from educators. Following the pilot test, in year two of Phase II we will implement a mixed-methods
randomized controlled trial (RCT) to test the efficacy of the completed HLH innovation to impact students’
career efficacy and health literacy. The RCT, led by the External Evaluation team at Applied Curiosity
Research, will help us determine the overall effectiveness of HLH to increase students’ health career efficacy
and health literacy.
项目概要
尽管对卫生保健工作者的需求不断增长,并且有证据表明多元化的卫生人力对于
为了公共福祉,大多数年轻人缺乏对健康职业选择以及如何追求这些职业的认识。狭窄的
职业暴露、建议不足、缺乏追求 STEM 科目的鼓励以及缺乏一致性
导师是黑人和拉丁裔/x 青年的重大障碍——这两个群体的代表性始终不足
跨卫生专业。该项目将帮助这些青少年克服障碍并培养积极的态度
健康身份,使他们对自己承担具有挑战性的健康职业道路的能力更有信心,
做出明智的健康决定。为此,来自 Hats & Ladders, Inc.、Mentoring in Medicine 的联合团队,
德克萨斯大学奥斯汀分校人类生态学院、CareerVillage 和应用好奇心研究中心将
设计、开发和测试健康帽子和梯子:为未来健康公民提供数据驱动的决策
和专业人士 (HLH)。这种混合数字体验面向九年级和十年级的学生和教育工作者
一般职业和健康教育计划,将包括基于项目的数字游戏化应用程序
活动、现场健康职业小组、近同伴指导课程以及强大的培训教学工具包
视频、进度报告、课程和其他教育者支持,为学生提供准确、可操作的信息
反馈。 HLH 数据驱动、基于调查和包容性干预的总体结果可能会
广泛的公共卫生影响,并且是(1)增强学生对自己追求的能力的信心
挑战健康职业道路并解决沿途的问题; (2) 提高发现能力,
理解并使用信息做出与健康相关的决策; (3) 培养教育工作者的能力
提供优质的健康职业指导和健康素养指导。旨在加强我们组织的
对高中青少年的影响,我们的干预将带来一系列新颖的互动——按照我们的要求
现有用户——并利用它们加深与健康职业和扫盲相关的探究式学习
高中早期的关键阶段。
在第一阶段,H&L 研发团队将从一致的医疗保健专业人员那里收集、分析和输入数据
到一个新的健康职业数据库中,我们将将该数据库集成到 HLH 应用程序中。为了收集数据,我们将开发,
并测试相关性,这是一项针对 500 名种族和职业多元化受访者的在线调查,通过
CareerVillage 的社区由 3,000 名健康专业人员 (52% BIPOC) 和 1,500 多名医学指导组成
志愿者。 25-30 名调查受访者中的一部分将参加视频采访。调查数据和视频
片段将被元数据标记并输入到数据库中,使我们能够推荐真实的和
向具有共同人口和职业特征的学生提供相关的健康内容。我们将测试可用性并
与学生组成小组或二人组进行应用程序设计和原型的可行性,以及应用程序和仪表板
通过深度访谈与教育工作者合作。我们还将调整两项学生成绩衡量标准,
使用专家评估青少年健康素养和职业决策自我效能量表
对学生进行评论和认知访谈,然后以 400 名学生为样本测试这些措施。全部
参与者将从纽约市青年和社区发展部的 180 多个网络中招募
与纽约市高中合作的社区组织。在第二阶段,我们将迭代并开发一个
在纽约市的五个教室中进行接近最终产品的试点测试,以进一步探索可用性、可行性和支持
来自教育工作者。试点测试结束后,在第二阶段的第二年,我们将实施混合方法
随机对照试验 (RCT),测试已完成的 HLH 创新对学生影响的有效性
职业效能和健康素养。该 RCT 由 Applied Curiosity 的外部评估团队领导
研究将帮助我们确定 HLH 提高学生健康职业效能的整体有效性
和健康素养。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sonia K Gonzalez其他文献
Sonia K Gonzalez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sonia K Gonzalez', 18)}}的其他基金
Piloting a Mobile App for HIV Risk Reduction among Young Latinas & Black Females
在拉丁裔年轻人中试点降低艾滋病毒风险的移动应用程序
- 批准号:
8466049 - 财政年份:2012
- 资助金额:
$ 29.24万 - 项目类别:
Piloting a Mobile App for HIV Risk Reduction among Young Latinas & Black Females
在拉丁裔年轻人中试点降低艾滋病毒风险的移动应用程序
- 批准号:
8554780 - 财政年份:2012
- 资助金额:
$ 29.24万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 29.24万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 29.24万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 29.24万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 29.24万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 29.24万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 29.24万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 29.24万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 29.24万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 29.24万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 29.24万 - 项目类别:
Research Grant














{{item.name}}会员




